La calidad de los datos y las decisiones empresariales

Authors

  • Mercedes Delgado Fernández Instituto Superior Politécnico José Antonio Echeverria
  • José Alberto Vilalta Alonso Instituto Superior Politécnico José Antonio Echeverria

Keywords:

Data quality, quality, data

Abstract

In this paper it is commented of the paper of the data like support of the decisions that the directive make and as important resource of the company. So that the decisions are objective it is not enough they take based on the data but rather, also, these they should have the appropriate quality, what means that they are adapted to the use that they are sought to give. Reference is made to the effect that it has more than enough the economy, image and prestige of the organizations has the poor data quality, to the multidimensional character of the data quality and the necessity of taking initiatives that allow to solve these problems that are presented in this field.

Downloads

Download data is not yet available.

References

1. Carliner, S. (2000). Physical, Cognitive, and Effective: A three-part framework for Information Design. Technical Communication.

2. Carlzon C. (2001). Toward a Framework for Assessing Data Quality. International Monetary Fund.

3. Cong, G., Fan, W., Geerts, F., Jia, X. & Ma, S. (2007). Improving data quality: consistency and accuracy. Proceedings of the 33 International Conference on Very Large Data Base.

4. Fajardo, F. & Crispido, I. (2004). Data Quality Evaluation, Una herramienta para evaluar la calidad de los datos en un sistema de información multifuente. X Congreso Argentino de Ciencias de la Computación (Cacic’2004), La Matanza, Argentina.

5. Gendron, M. & D’Onofrio, M. (2001). Data Quality in the Healthcare Industry. Data Quality, Vol. 7, No. 1.

6. Gil – Aluja, J. (2000). Las decisiones y la incertidumbre. Barcelona.

7. Javed, B. & Hussain, S. (2003). Data quality – A problem and an approach. Wipro Technologies.

8. Kaposhunas, A. (2002). Data Cleansing: The Foundation of Customer Information Management. www. dnb.com.

9. Klein, B. (1998). Data quality in the Practice of Consumer Product management: evidence from the field. Data Quality, Vol. 4, No. 1.

10. Kovac, R., Lee, Y. & Pipino, L. (1997). Total Data Quality Management: The case of IRI. Second Conference on Information Quality.

11. Lee, Y. & Strong, D. (2004). Knowing – why About Data Processes and Data Quality. Journal of Management Information Systems. Vol. 20, No. 3, pp. 13 – 39.

12. Lee, Y. (2004). Crafting Rules: Context-Reflective Data Quality Problem Solving. Journal of Management Information Systems. Vol. 20, No. 3, pp. 93 – 119.

13. Levy, S. (2004). Model Documents and forms for Organizing and Maintaining a Data Quality Program. www.dataqualitymodeldocument.com

14. López, C., González, E. & Goiret, J. (1994). Análisis por componentes principales de datos pluviométricos. Aplicación a la detección de datos anómalos. Estadística.

15. Loshin, D. (2007). Data Profiling. Data Integration and Data Quality: The Pilars of Master Data Management. White Paper.

16. Maynard, J. (1982). Dictionary of Data Processing. Londres, Inglaterra.

17. Naveh, E. & Halevy, A. (2000). A hierarchical framework for a quality information system. Total Quaity Management, Vol. 11, No. 1, p 87-111.

18. Olson, J. (2002). Data Profiling: The Data Quality Analyst’s Best Tool. DM Direct, December. DMReview.com

19. Redman, T. C. (1997). Data Quality in the Information Age. Artech House.

20. Redman, T. C. (1998). The Impact of Poor Data Quality on the Typical Enterprise. Communications of the ACM, Vol. 41, No. 2, pp 79 – 82.

21. Redman, T. C. (2001). Sistemas de Calidad de Datos de Segunda Generación. Manual de Calidad, McGraw Hill, Madrid, España.

22. Rossel, R. (2003). Mejoramiento de la Calidad de los datos en un Data Warehouse.

23. Strong, D.M., Lee, Y.W. & Wang R.Y. (1997). 10 Potholes in the Road to Information Quality. IEEE Computer, Vol. 30, No. 8, pp. 38 – 46.

24. Tayi, G. & Ballou, D. (1998). Examinig Data Quality. Communications of the ACM. Vol. 41, No. 2.

25. Vilalta, J. & Espinosa, M. (2006). Propuesta Metodológica para el diagnóstico de la calidad de los datos. IV Simposio de Ingeniería Industrial y Afines (SIIA), Cujae, La Habana, Cuba.

26. Wang, R., Kon, H. & Madnick, S. (1992) Data Quality Requirements Analysis and Modeling. Ninth International Conference of Data Engineering.

27. Wang, R. (2004). Data Quality: Theory in Practice. EPA 23rd Annual Conference on Managing Environmental Quality Systems.

Downloads

Published

2008-06-01

Issue

Section

Artículos

How to Cite