Fuzzy inference system for determining the risk profile of investors in the Colombian financial system

Authors

DOI:

https://doi.org/10.18041/1909-2458/ingeniare.33.9735

Keywords:

fuzzy logic, risk profile, preferences, investor, financial system

Abstract

Financial institutions determine the risk profile of investors through surveys that oversimplify the complexity of individual preferences, which limits the portfolio of these institutions. Thus arises the need to use alternative methods to provide greater relevance in the portfolios offered by the financial system. In this sense, the starting point is the following question: how to structure a system to more adequately determine the risk profile of investors? In response, this research develops a methodological proposal based on fuzzy logic, according to which investors are categorized within non-discrete risk scales, considering the vagueness and heterogeneity in the characteristics of each individual. The results show that the proposed fuzzy inference system potentially improves the risk profile classification, capturing the particularities of the investor.

Downloads

Download data is not yet available.

Author Biographies

  • Milton Samuel Camelo Rincón, Universidad de la Salle

    Magíster en Ciencias Económicas de la Universidad Nacional de Colombia. Profesor investigador de la Universidad de la Salle. Bogotá, Colombia. mscamelo@unisalle.edu.co. ORCID: https://orcid.org/0000-0001-8727-1257

  • Mónica Patricia Enciso Pulido, Universidad Sergio Arboleda

    Magíster en Administración de Negocios (MBA) de la Universidad Sergio Arboleda. PRIME Bussines School. Bogotá, Colombia. monica.enciso01@correo.usa.edu.co. ORCID: https://orcid.org/0000-0002-2451-7114

References

Ministerio de Hacienda y Crédito Público, Decreto 661 del 17 de abril de 2018. Bogotá, Colombia, 2018.

M. O. Rieger, “Why do investors buy bad financial products? Probability misestimation and preferences in financial investment decision”, J. Behav. Financ., vol. 13, no. 2, pp. 108–118, 2012, doi: 10.1080/15427560.2012.680991.

J. V. Sánchez, “El comportamiento del precio de las acciones t recesión económica. EEUU y México”, Rev. Latinoam. Econ., vol. 41, no. 160, pp. 84-107, 2010.

M. Sánchez, M. D. Oliver, and C. Sanchís, “Fuzzy logic and its uses in finance: A systematic review exploring its potential to deal with banking crises”, Mathematics, vol. 7, no. 1091, pp. 1-22, 2019, doi: 10.3390/math7111091.

Autorregulador del mercado de valores de Colombia, “ABC del inversionista”, Educacion financiera para todos, no. 1. p. 24, 2014.

A. Tversky and D. Kahneman, “Advances in prospect theory: Cumulative representation of uncertainty”, J. Risk Uncertain., vol. 5, pp. 297-323, 1992, doi: 10.1007/BF00122574.

N. Nicholson, E. Soane, M. Fenton-O’Creevy, and P. Willman, “Personality and domain-specific risk taking”, J. Risk Res., vol. 8, no. 2, pp. 157-176, 2005, doi: 10.1080/1366987032000123856.

S. D. Gosling, P. J. Rentfrow, and W. B. Swann, “A very brief measure of the Big-Five personality domains”, J. Res. Pers., vol. 37, no. 6, pp. 504-528, 2003, doi: 10.1016/S0092-6566(03)00046-1.

D. De Bortoli, N. Da Costa, M. Goulart, and J. Campara, “Personality traits and investor profile analysis: A behavioral finance study”, PLoS One, vol. 13, no. 3, pp. 1-18, 2019, doi: 10.1371/journal.pone.0214062.

Fiduciaria Central, “Perfil de riesgo para inversionistas”. 2016.

BTG Pactual, “Cuestionario perfil de riesgo del cliente”. 2020.

Skandia, “Encuesta Perfil de Inversión del Contrato Fondo de Pensiones Voluntarias Skandia Multifund”. 2019.

E. Turunen, “Connecting a tenable mathematical theory to models of fuzzy phenomena” in Studies in Fuzziness and Soft Computing, 243rd ed., Berlin: Springer, 2009.

J. A. Goguen, “The logic of inexact concepts”, Synthese, vol. 19, no. 3-4, pp. 325-373, 1969, doi: 10.1007/BF00485654.

C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part II”, IEEE Trans. Syst. Man Cybern., vol. 20, no. 2, pp. 419-435, 1990, doi: 10.1109/21.52552.

A. Reveiz and C. León, “Operational Risk Manegement using a Fuzzy Logic Inference System”, Borradores Econ., no. 574, pp. 1-30, 2009.

H. Dourra and P. Siy, “Investment using technical analysis and fuzzy logic”, Fuzzy Sets Syst., vol. 127, no. 2, pp. 221-240, 2002, doi: 10.1016/S0165-0114(01)00169-5.

A. Escobar, J. Moreno, and S. Múnera, “A technical analysis indicator based on fuzzy logic”, Electron. Notes Theor. Comput. Sci., 2013, doi: 10.1016/j.entcs.2013.02.003.

O. Ece and A. S. Uludag, “Applicability of Fuzzy TOPSIS Method in Optimal Portfolio Selection and an Application in BIST”, Int. J. Econ. Financ., vol. 9, no. 10, p. 107, 2017, doi: 10.5539/ijef.v9n10p107.

M. G. Yunusoglu and H. Selim, “A fuzzy rule based expert system for stock evaluation and portfolio construction: An application to Istanbul Stock Exchange”, Expert Syst. Appl., vol. 40, pp. 908-920, 2013, doi: 10.1016/j.eswa.2012.05.047.

S. Medina and O. O. Manco, “Diseño de un sistema experto difuso: evaluación de riesgo crediticio en firmas comisionistas de bolsa para el otorgamiento de recursos financieros”, Estud. Gerenciales, vol. 23, no. 104, pp. 101-129, 2007, doi: 10.1016/s0123-5923(07)70019-0.

S. Medina and G. Paniagua, “Modelo de inferencia difuso para estudio de crédito”, DYNA, vol. 75, no. 154, pp. 215-229, 2008.

M. Enciso, A. Andrés, and J. Campo, “Sistema de inferencia difuso para la inflación en Colombia”, Ensayos Sobre Polit. Econ., vol. 31, no. 71, pp. 73-84, 2013, doi: 10.1016/S0120-4483(13)70012-5.

L. Santana, “Una aplicación de la lógica difusa a la evaluación del balance de riesgos de la inflación y del crecimiento macroeconómico”, Cienc. Soc., vol. 38, no. 3, pp. 497-514, 2013.

A. Arango, J. Velásquez, and C. Franco, “Técnicas de lógica difusa en la predicción de índices de mercados de valores: una revisión de literatura”, Rev. Ing. Univ. Medellín, vol. 12, no. 22, pp. 117-126, 2013, doi: 10.22395/rium.v12n22a10.

J. F. Díaz, E. Coba, and P. Navarrete, “Lógica difusa y el riesgo financiero. Una propuesta de clasificación de riesgo financiero al sector cooperativo”, Contaduría y Adm., vol. 62, pp. 1670-1686, 2017, doi: 10.1016/j.cya.2017.09.001.

M. D. Rojas, E. Zuluaga, and M. E. Valencia, “Sistema de inferencia difuso para la valoración de empresas”, Rev. Ing. Univ. Medellín, vol. 13, no. 24, pp. 89-108, 2014, doi: 10.22395/rium.v13n24a6.

L. A. Zadeh, “Fuzzy sets”, Inf. Control, vol. 8, no. 3, pp. 338-353, 1965, doi: 10.1016/S0019-9958(65)90241-X.

E. H. Mamdani, “Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis”, IEEE Trans. Comput., vol. 26, no. 12, pp. 1182-1191, 1977, doi: 10.1109/TC.1977.1674779.

A. M. Barbosa, “FuzzySim: applying fuzzy logic to binary similarity indices in ecology”, Methods Ecol. Evol., no. 6, pp. 853-858, 2015.

CEPAL, “La nueva era demográfica en América Latina y el Caribe. La hora de la igualdad según el reloj poblacional”, in Primera Reunión de la Mesa Directiva de la Conferencia Regional sobre Población y Desarrollo de América Latina y el Caribe, 2014.

BBVA, “Corto, mediano y largo plazo: ¿cuál me conviene?”, 2020. [Online]. Available: https://www.bbva.mx/educacion-financiera/ahorro/corto-mediano-y-largo-plazo-cual-me-conviene.html.

G. Bojadziev and M. Bojadziev, “Fuzzy Logic Control for Business, Finance, and Management”, in Advances in Fuzzy Systems: Applications and Theory, Second., World Scientific, 2007.

J. Grajales, D. López, J. Muñoz, and R. Maldonado, “Control en cascada por métodos difusos”, Rev. EIA, no. 8, pp. 181-193, 2007, doi: 10.24050/reia.v4i8.193.

Published

2022-08-11

Issue

Section

Artículos

How to Cite

1.
Camelo Rincón MS, Enciso Pulido MP. Fuzzy inference system for determining the risk profile of investors in the Colombian financial system. ingeniare [Internet]. 2022 Aug. 11 [cited 2025 Dec. 5];(33):89-110. Available from: https://revistas.unilibre.edu.co/index.php/ingeniare/article/view/9735

Similar Articles

1-10 of 192

You may also start an advanced similarity search for this article.