Arsenic (III) Removal of Aqueous Systems by Adsorption using Natural Solids from Ecuador

Authors

  • Delly San Martín Universidad Técnica Particular de Loja
  • Daniel F Medina
  • Carmen Milena López Universidad Técnica Particular de Loja
  • Silvio Aguilar Universidad Técnica Particular de Loja
  • Luis V. García Universidad Técnica Particular de Loja
  • Diana Guaya Universidad Técnica Particular de Loja

DOI:

https://doi.org/10.18041/1794-4953/avances.1.6186

Keywords:

absorption, arsenic pollution, clays, heavy metals, natural zeolites

Abstract

The aim of this work was to investigate the properties of two clays and a natural zeolite available in Ecuador, for the removal of Arsenic (III), (As (III)), in synthetic aqueous solutions. The adsorbents were prepared from the powdered solids, shaped as cylindrical extrudates of 0.5 cm in length by 0.2 cm in diameter approximately, and characterized by X-ray Diffraction (XRD), X-ray Fluorescence (FRX) and specific area ( Ae). Arsenic adsorption in aqueous systems was determined by charging load  experiments, using a dosage of 0.1 L of solution per grame of adsorbent, at 30 ° C in a stirred system (100 r. p. m.). The Arsenic content was determined by means of atomic absorption spectrophotometry with a hydride generator. The kinetics absorption was analyzed  by following the variation of the concentration of an 80 mg As/L solution, taken at different times for an extended period of 24 hours. The experimental data showed a good fit using a pseudo-first-order equation for the natural zeolite and pseudo-second-order equation for the two clays. The maximum adsorption capacity of As was higher for clays (13-15 ) compared to zeolite (5-6 ). These values are lower compared to those reported in the literature, however, the solids studied have the advantage of requiring a simple preparation process and they represent an abundant cheap raw material in the country.

Downloads

References

R. Jain, A. Thakur, P. Kaur, K.-H. Kun y P. Devi, “Advances in imaging-assisted sensing techniques for heavy metals in water: trends, challenges and opportunities”, TRAC Trend. Anal. Chem., vol. 123, article 115758, Feb. 2020. https://doi.org/10.1016/j.trac.2019.115758

G. Hu, E. Baktavar, K. Hewage, M. Mohseni y R. Sadiq, “Heavy metals risk assessment in drinking water: An integrated probabilistic-fuzzy approach”, J. Environ. Manage, vol. 250, article 109514, Nov. 2019. https://doi.org/10.1016/j.jen vman.2019.109514

B. Liu, K.-H. Kim, Y. Kumar y S. Kim, “A review functional for adsorptive removal of arsenic ions in aqueous system”, J. Hazard. Mater. vol. 388, article 121815, Apr. 2020. https://doi.org/10.1016/j.hazmat.2019. 121815

R. Wei, X. Wang, W. Tang, Y. Yang, Y. Gao, H. Zhong y L. Yang, “Bioaccumulations and potential human health risks assessment of heavy metals in ppk-expressing transgenic rice”, Science of the Total Environment, vol. 710, article 136496, Mar. 2020. https://doi.org/10.1016/j.scitotenv.2020.136496

P. A. Jiménez, “Diagnóstico de la presencia y contaminación por arsénico en el suelo y agua de consumo en la parroquia de Papallacta”, tesis de pregrado, Escuela Politécnica Nacional, Quito, Sep. 2018. [En línea]. Disponible: http://bibdigital.epn.edu.ec/handle/15000/19760

F. Francisca y M. E. Carrao Pérez, “Remoción de arsénico en agua mediante procesos de coagulación-floculación”, Rev. Int. Contam. Ambie., vol. 30, n.° 2, pp. 177-190, Apr. 2014. [En línea]. Disponible: https://www.revistascca.unam.mx/rica/index.php/rica/article/view/45419/40943

A. Bora, S. Gogoi, G. Barauah y R. Dutta, “Utilization of co-existing iron in arsenic removal from groundwater by oxidation-coagulation at optimized pH”, J. Environ. Chem. Eng., vol. 4, n.° 3, pp. 2683-2691, Sep. 2016. https://doi.org/ 10.1016/j.jece.2016.05.012

A. Chen, L. Wang, T. Sorg y D. Lytle, “Removing arsenic and co-ocurring contaminants from drinking water by full-scale ion exchange and point-of-use/point-of-entry reverse osmosis”, Water Res., vol. 172, article 115455, Apr. 2020. https://doi.org/10.1016/j.watres.2019.115455

L. Lingamdine, J.-S. Choi, Y.-L. Choi, Y.-Y. Chang, J.-K. Yang, R. R. Karri y J. Koduru, “Process modeling and optimization of an iron oxide immobilized graphene oxide gadolinium nanocomposite for arsenic adsorption”, J. Mol. Liq., vol. 299, article 112261, Feb. 2020. https://doi.org/10.1016/j.molliq.2019.112261

S. Ploychompoo, J. Chem, H. Luo y Q. Liang, “Fast and efficient aqueous arsenic removal by functionalized MIL-100(Fe)/rGO/S-MnO2 ternary composites: adsorption performance and mechanism”, J. Environ.Sci., vol. 91, pp. 22-34, May. 2020. https://doi.org/10.1016/j.jes.2019.12.014

Q. Qiao, X. Yang, L. Liu, Y. Luo, W. Tan, C. Liu, Z. Dang y G. Qiu, “Electrochemical adsorption of cadmium and arsenic by natural Fe-Mn nodules”, J. Hazard. Mater., vol. 390, article 122165, May. 2020. https://doi.org/10.1016/j.hazmat.2020.122165

H. X. Linh, P. T. Oanh, N. N. Huy, P. V. Hao, P. N. Minh y D. V. Thanh, “Electrochemical mass production of graphene nanosheets for arsenic removal from aqueous solutions”, Mater. Lett., vol. 250, pp. 16-19, Sep. 2019. https://doi.org/10.1016/j.matlet.2019.04115

A. Maghsodi y L. Adlnasab, “In-situ chemical deposition as a new method for the preparation of Fe3O4 nanoparticle embedded on anodic aluminum oxide membrane (Fe3O4@AAO): Characterization and application for arsenic removal using response surface methodology”, J. Environ. Chem. Eng., vol. 7, n.° 5, article 103288, Oct. 2019. https://doi.org/10.1016/j.jece.2019.103288

C. Corroto, A. Iriel, A. Fernández Cirelli y A. L. Pérez Carrera, “Constructedwetlands as an alternative for arsenic removal from reverse osmosis effluent”, Sci. Total Environ., vol. 691, pp. 1242-1250, Nov. 2019. https://doi.org/10.1016/j.scitotenv.2019.07.234

T. H. Nguyen, H. N. Tran, H. A. Vu et al., “Laterite as a low-cost adsorbent in a sustainable decentralized filtration system to remove arsenic from grounwater in Vietnam”, Sci. Total Environ., vol. 699,article 134267,Jan 2020, https://doi.org/10.1016/j.scitotenv.2019.134267.

Z. Li, L. Wu, S. Sun, J. Gao, H. Zhang, Z. Zhang y Z. Wang, “Disinfection and removal performance for Escherichia coli, toxic heavy metals and arsenic by wood vinegar-modified zeolite”, Ecotox. Environ. Safe, vol. 174, pp. 129-136, Jun. 2019. https://doi.org/10.1016/j.ecoenv.2019.01.124

T. Yang, C. Han, H. Liu, L. Yang, D. Liu, J. Tang y Y. Luo, “Synthesis of Na-X zeolite from low aluminum coal fly ash: Characterization and high efficient As(V) removal”, Adv. Powder Technol., vol. 30, n.° 1, pp. 199-206, Jan. 2019. https://doi.org/10.1016/j.1pt.2018.10.023

R. Soni y D. P. Shukla, Chemosphere, vol. 219, pp. 504-509, Mar. 2019. https://doi.org/10.1016/j.chemosphere.2018.11.203

J. Ayala y B. Fernández, “Industrial waste materials as adsorbents for the removal of as and other toxic elements from and abandoned mine spoil heap leachate: a case study in Asturias”, J. Hazard. Mater., vol. 384, article 121446, Feb. 2020. https://doi.org/10.1016/j.jhazmat.2019.121446

R. Uribe, “Investigaciones de materias primas minerales no metálicas en el Ecuador”, Revista Politécnica, vol. 36, pp. 36-44, Sep. 2015.

L. Machiels, R. Snelling, F. Morante, J. Elsen y C. Paredes, “Mineralogía cuantitativa de los depósitos de zeolitas en la costa del Ecuador”, Revista Tecnológica ESPOL, vol. 19, n.° 1, pp. 41-48, Oct. 2006.

M. Rakibuddin y H. Kim, “Sol-gel derived Fe3O4 quantum dot decorated silica composites for effective removal of arsenic (III) from water”, Mater. Chem. Phys., vol. 240, article 122245, Jan. 2020. https://doi.org/10.1016/j.matchemphys.2019.122245

V. Manirethan, K. Raval y R. M. Balakrishnan, “Adsortive removal of trivalent and pentavalent arsenic from aqueous solutions using iron and cooper impregnated mlanin extracted from the marine bacterium”, Environ. Pollut., vol. 257, article 113576, Feb. 2020. https://doi.org/10/1016/j.envpol.2019.113576

P. Webb, C. Orr, J. Oliver y S. Yunes, Analytical methods in fine particle technology, Norcross, USA: Micromeritics Instrument Corporation, 1997.

B. Casentini, M. Gallo y F. Baldi, “Arsenate and arsenite removal from contaminated water by iron oxides nanoparticles formed inside a bacterial exopolysaccharide”, J. Environ. Chem. Eng., vol. 7, n.° 1, article 102908, Feb. 2019. https://doi.org/10.1016/j.jece.2019.102908

A. D. J. Montes-Luna, N. C. Fuentes-López, Y. A. Perera-Mercado, O. Pérez-Camacho, G. Castruita de León, S. García-Rodríguez y M. García-Zamora, “Caracterización de clinoptilolita natural y modificada con Ca+2 por distintos métodos físico químicos para su posible aplicación en procesos de separación de gases”, Superficies y Vacío, vol. 28, n.º 1, pp. 5-11, Mar. 2015.

V. Inglezakis y S. Poulopoulos, “Adsortion and Ion Exchange”, en Adsorption, Ion Exchange and Catalysis. Amsterdam: Elsevier Science, 2006, pp. 243-353.

Y. Murillo, L. Giraldo y J. C. Moreno, “Determinación de la cinética de adsorción de 2,4-dinitrofenol en carbonizado de hueso bovino por espectrofotometría UV-Vis”, Rev. Colomb. Quim., vol. 40, n.° 1, pp. 91-103, May 2011.

N. García Asenjo, “Una nueva generación de carbones activados de altas prestaciones para aplicaciones medioambientales”, tesis de doctorado, Uni . Oviedo, Oviedo, España, 2014. [En línea]. Disponible: http://hdl.handle.net/10261/103330

R. Soni y D. P. Shukla, Data Brief, vol. 22, pp. 871-877, 2019, Feb. 2019. https://doi.org/10.1016/j.dib.2019.01.004

M. Khatamian , N. Khodakarampoor, M. Saketoskoui y N. Kazemian, “Synthesis and characterization of RGO/zeolite composites for the removal of arsenic from contaminated water”, RSC Advances, vol. 45, n.° 5, pp. 35352-35360, Apr. 2015. https://doi.org/10.1039/c5ra02949j

M. B. Baskan y A. Pala, “Removal of arsenic from drinking water using modified natural zeolites”, Desalination, vol. 281, pp. 396-403, Oct. 2011. https://doi.org/10.1016/j.desal.2011.08.015

Published

2021-04-07

How to Cite

San Martín, D., Medina, D. F., López, C. M., Aguilar, S. ., García, L. V., & Guaya, D. (2021). Arsenic (III) Removal of Aqueous Systems by Adsorption using Natural Solids from Ecuador . Avances: Investigación En Ingeniería, 18(1 (Enero-Junio). https://doi.org/10.18041/1794-4953/avances.1.6186