Design and building of solar dryer equipment for tropical fruits

Authors

  • Luis Eduardo García, M.Sc. Universidad de América
  • Manuel Felipe Mejía, M.Sc. Universidad de América
  • Diana Julieth Mejía Universidad de América
  • Carlos Andrés Valencia Universidad de América

Keywords:

Renewable energy, solar energy, food dehydration, heat and mass transfer, mathematical modeling of dehydration

Abstract

The depletion of fossil resources and environmentalimplications associated with its use has led to interestin the use of renewable resources. Among these, solarenergy has great potential in the process of obtainingenergy and heat. Specifically, in the development offruit dehydration processes. This paper describes thedesign and construction of a solar dehydration equipmentinduced flow. The equipment obtained as a resultof this study allows for the development of thedehydration process in tropical fruits of different physicaland organoleptic characteristics. First, the studyfocused on the selection of the equipment deploymentpoint and selecting the constructive disposition.Subsequently, it was focused on the design, dimensioningand construction of the equipment. Finally,dehydration tests were performed; the results arecompared with the results of traditional dehydrationequipment and with data obtained from the use ofmathematical models used for simulating the process.The results provide evidence of differences of 20 %in processing times using solar energy compared toenergy derived from fossil fuel. In the same way, it isestablished that the modified Page model is the onethat best fits the data obtained from the dehydrationprocess developed in this study. Design innovationsdeveloped in this study allow obtaining dehydratedfruits evenly and reducing CO2.

Downloads

Download data is not yet available.

References

1. A. Sharma, C.R. Chen y Nguyen Vu Lan. “Solarenergy drying systems: A review”. Renewable andsustainable energy reviews, vol 13 (2009), pp.1185 – 1210.

2. A. A. El-Sebaii y S.M. Shalaby. “Solar drying ofagricultural products: A review”. Renewable andsustainable energy review, vol 16 (2012), pp.37-43.

3. A. Cerda y S. Byron. “Diseño y construcción de undeshidratador rectangular de inducción para la obtenciónde pasa de uvilla con capacidad de 300 kg/díapara la empresa Equinox Business Limited,” M.Sc.Sangolquí: Escuela Politécnica del Ejército,2005.

4. B. J. Ruiz y V. Rodríguez-Padilla. “Renewableenergy sources in the Colombian energy policy analysisand perspectives”. Energy policy, vol 34, 2006, pp.3684–3690.

5. B. Romdhane, “The air solar collectors: Comparativestudy, introduction of baffles to favor the heattransfer”. Solar Energy, vol 81, No. 1, 2007, pp.139-149.

6. C. Geankoplis. Procesos de transporte y operacionesunitarias. México, Editorial Continental, S.A,1998.

7. F. Rodríguez. Ingeniería de la industria alimentaria(III). Conservación de alimentos por reducción de suactividad de agua. Secado. Capítulo 5, 2002.

8. H. Váquiro. “Contribución al estudio y optimizacióndel secado intermitente: aplicación al secado de mango”.Tesis doctoral, Valencia: Universidad Politécnicade Valencia. Departamento de Tecnologíade Alimentos. España. 2009.

9. I. Puertas. “Modelado y construcción de un secaderosolar hibrido para residuos biomásicos”. Tesis doctoral,Badajoz: Universidad de Extremadura,España. 2005.

10. J. Kreider et al. Solar energy handbook. Fundamentalsof solar radiation, Chapter 2. New York, Mc-Graw hill. 1981.

11. O. V. Ekechukwu. “Review of solar-energy dryingsystems I: an overview of drying principles and theory”.Energy Conversion & Management, vol 40, No6. (1999), pp. 593-613.

12. O. V. Ekechukwu. “Review of solar-energy dryingsystems II: an overview of solar drying technology”.Energy Conversion and Management, vol 40,No 6. (1999), pp. 615-655.

13. O. V. Ekechukwu. “Review of solar-energy dryingsystems III: low temperature air-heating solar collectorsfor crop drying applications”. Energy Conversionand Management, vol 40, No 6. (1999), pp.657-667.

14. S. A. Kalogirou. “Environmental benefits of domesticsolar energy systems”. Energy Conversionand Management, vol 45, No 18-19 (2004),pp. 3075-3092.

15. UPME. IDEAM. Atlas de radiación Solar de Colombia,2005.

16. V. Belessiotis y E. Delyannis. “Solar Drying”. SolarEnergy, vol 85, Progress in solar energy 1,2011, pp. 1665-1691.

17. Ali Motaveli, Saeid Minaei y Mohammad HadiKhoshtagaza. “Evaluation of energy consumption indifferent drying methods”. Energy conversion andmanagement, vol 52, (2011), pp. 1192 - 1199.

18. Vega-Galvez, et. Al. “Mathematical modeling ofthin-layer drying kinetics of Cape Gooseberry (PhysalisPeruvian L.)”. Journal of food processingand presenrvation, (2012).

19. I. Doymaz. “Convective drying kinetics of strawberry”.Journal Chemical engineering and processing,vol 47 (2008), pp. 914–919.

Downloads

Published

2011-12-01

How to Cite

García, L. E., Mejía, M. F., Mejía, D. J., & Valencia, C. A. (2011). Design and building of solar dryer equipment for tropical fruits. Avances: Investigación En Ingeniería, 9(2), 09-19. https://revistas.unilibre.edu.co/index.php/avances/article/view/2712