Identification of uncertainty in the stochastic process in mean flows in the river Fonce – (San Gil - Santander)
DOI:
https://doi.org/10.18041/1794-4953/avances.2.260Keywords:
Caudal, espacio muestral, incertidumbre, sigma álgebra, espacio medibleAbstract
The aim of this research is to demonstrate that the movement of the Fonce River, interpreted as erratic in the average values of flow, in the IDEAM hydrological station, located in San Gil, is a perception problem and actually its classification as a Wiener stochastic process, could be a result of the uncertainty margins of the metering devices instead of the erratic nature of the river behavior. At the beginning was collected the average river flow values, then was considered two different cases (with and without uncertainty) and based on that, were established the sample spaces, the events, the sigma algebras, the measurable spaces, the probability spaces, the random variables, and finally the stochastic process itself. This work lets conclude that the apparently erratic movement in the river behavior average flows of the Fonce river could be a result of the high uncertainty levels generated mainly by the mill of the appraisal of the river instead of an own property of the river nature. This will let to establish new stochastic lectures to model the average Fonce river flows dynamic, in which must be précised the mistakes in the metering in a detailed way for each one of the devices used in the measuring, and in each one of the appraisal for the last three decades of monitoring. The work was developed under the research project 1770 ING UMNG 2015, with funding of the Investigation´s office and together with the University of Pamplona.
Downloads
References
Rivera, H. G., Palacio, G. D. C., Rangel, G. F. M.(2013). Impacto de los escenarios de cambio climático en losrecursos naturales renovables en jurisdicción de laCorporación Autónoma Regional de Santander.Universidad Nacional de Colombia, Bogotá, OteroImpresos.
Martínez, P. J. F., Domínguez, C. E. A., Rivera, H.G. (2012). Uncertainty regarding instantaneousdischarge obtained from stage-discharge ratingcurves built with low density dischargemeasurements. Ingeniería e Investigación, vol. 32, No.1, pp. 30-35.
Blanco, C. L. (2003). Probabilidad. UniversidadNacional de Colombia, Bogotá.
García, A. M. A. (2005). Introducción a la teoría deprobabilidad. Fondo de Cultura Económica, México.
http://www.virtual.unal.edu.co/cursos/ciencias/2001065/html/un2/cont_207_49.html
Acuña, E. (s.f). Conceptos básicos de probabilidades. Universidad de Puerto Rico. http://academic.uprm.edu/eacuna/miniman4sl.pdf
Benjamin, J. (1970). Probability, Statistics, and Decision for Civil Engineers. San Francisco, McGraw-Hill, San Francisco, pp. 685.
De La Rosa E., Blázquez, R. (2003). Procesos estocásticos en ingeniería civil. Madrid: Colegio de Ingenieros de Caminos, Canales y Puertos.
Araujo, J. J. (2003). Elementos de teoria de probabilidad para ingenieros. Bogotá: CEJA, Centro Editorial Javeriano.
Risken, H. The Fokker-Planck Equation. Springer-Verlag, London.
Oksendal, B. (2003) Stochastic differential equations. Springer, Berlin.
Dominguez, E., Rivera, H. (2010) A Fokker–Planck–Kolmogorov equation approach for the monthly affluence forecast of Betania Hydropower reservoir. Journal of Hydroinformatics, 12 (4), pp. 486-501.
