Bioconversion of potato peels using black soldier fly larvae (Hermetia illucens)
DOI:
https://doi.org/10.18041/1794-4953/avances.1.13155Keywords:
Circular economy, Larval biomass, Organic fertilizers, Waste management, Waste recoveryAbstract
In the present study, the effect of larval density (0, 1, 2, and 3 larvae/cm²) on the bioconversion of potato and reduction of potato peels (Solanum tuberosum) was evaluated using black soldier fly larvae (Hermetia illucens). The hatching of the eggs produced a total of 72,512 larvae per gram. The final bioconversion showed values ranging from 16.8% to 27.8%, while waste reduction ranged from 59% to 77%. The highest values for both indicators were recorded in treatments with 3 larvae/cm2. Although increasing larval density reduces the size of each individual, the presence of more larvae per unit area improves both bioconversion and waste reduction. The use of this technology allows the transformation of potato peels into organic compost and larval biomass rich in proteins and fats, which could be used for animal feed, thereby contributing to the valorization of this agro-industrial waste.
Downloads
References
[1] D. Wu, “Recycle technology for potato peel waste processing: A review,” Procedia Environmental Science, vol. 31, 2016, doi: 10.1016/j.proenv.2016.02.014.
[2] T. A. Kurniawan et al., “Landfill mining: A step forward to reducing CH4 emissions and enhancing CO2 sequestration from landfill,” Journal of Hazardous Materials Advances, p. 100512, Oct. 2024, doi: 10.1016/J.HAZADV.2024.100512.
[3] J. Frigerio et al., “From urban trash to city cash: Technologies for sustainable development of cities through the valorisation of urban organic waste in Europe,” Waste Management Bulletin, vol. 3, no. 4, p. 100222, Dec. 2025, doi: 10.1016/J.WMB.2025.100222.
[4] D. Purkayastha and S. Sarkar, “Sustainable waste management using black soldier fly larva: a review,” 2022. doi: 10.1007/s13762-021-03524-7.
[5] L. Barrantes-Sandoval, D. M. Cuesta-Parra, F. Correa-Mahecha, and J. F. Garcia-Trejo, “Nutritional Content of Black Soldier Fly Larvae Achieved during Biotransformation of Organic Wastes,” Chemical Engineering Transactions, vol. 110, pp. 385–390, Jul. 2024.
[6] M. C. Acosta Hernández, V. Guzmán Muñetón, and F. Correa Mahecha, “Evaluación del contenido proteico de las larvas de mosca soldado negro (Hermetia illucens sp.) durante el proceso de degradación de biorresiduos,” Trabajo de grado – Ingeniería Química, Universidad de América, Bogotá, 2022. [Online]. Available: https://hdl.handle.net/20.500.11839/9086
[7] P. O. Aigbedion-Atalor et al., “Regenerative edible insects for food, feed, and sustainable livelihoods in Nigeria: Consumption, potential and prospects,” Future Foods, vol. 9, p. 100309, Jun. 2024, doi: 10.1016/J.FUFO.2024.100309.
[8] A. G. Del Hierro, M. J. Anrango, D. Ortiz, and L. Sánchez, “Captura y cría de la mosca soldado negra (Hermetia Illucens) para la biodegradación de desechos orgánicos en Puerto Quito, Ecuador,” Ecuadorian Science Journal, vol. 5, no. 3, 2021, doi: 10.46480/esj.5.3.164.
[9] Icontec, NTC 5167:2022 Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo. 2022. [Online]. Available: https://tienda.icontec.org/catalogsearch/advanced/result/?cat=&products_number_complete=5167&name=&products_name_eng=&products_prefix=&products_macrosector=&products_norma_state=&root_cat=&sub_cat=0&sub-group=0&products_cti=0
[10] C. Zurbrügg, B. Dortmans, A. Fadhila, B. Vertsappen, and S. Diener, “From pilot to full scale operation of a waste-to-protein treatment facility,” Detritus, vol. 1, no. March, pp. 18–22, 2018, doi: 10.26403/detritus/2018.22.
[11] A. Singh and K. Kumari, “An inclusive approach for organic waste treatment and valorisation using Black Soldier Fly larvae: A review,” Journal of Environmental Management, vol. 251, p. 109569, 2019, doi: https://doi.org/10.1016/j.jenvman.2019.109569.
[12] M. Gold et al., “Biowaste treatment with black soldier fly larvae: Increasing performance through the formulation of biowastes based on protein and carbohydrates,” Waste Management, vol. 102, pp. 319–329, 2020, doi: https://doi.org/10.1016/j.wasman.2019.10.036.
[13] W. Yakti et al., “The Effect of Rearing Scale and Density on the Growth and Nutrient Composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) Larvae,” Sustainability (Switzerland), vol. 14, no. 3, 2022, doi: 10.3390/su14031772.
[14] N. P. Vega, “Propiedades químicas, físicas y tecnofuncionales de la cáscara de papa (Solanum tuberosum) para uso como extensor en productos cárnicos frescos picados,” Tesis de grado, Escuela Agrícola Panamericana, Zamorano, 2020.
[15] L. M. Muñoz and M. S. Parada, “Definición de las condiciones de operación para la producción de larva de mosca soldado negra (Hermetia illucens),” Trabajo de grado, Universidad de América, Bogotá D.C., 2022. [Online]. Available: https://repository.uamerica.edu.co/server/api/core/bitstreams/695be559-3d44-445b-a734-56c5103b0716/content
[16] K. B. Barragan-Fonseca, M. Dicke, and J. J. A. van Loon, “Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia illucens),” Entomologia Experimentalis et Applicata, vol. 166, no. 9, pp. 761 – 770, 2018, doi: 10.1111/eea.12716.
[17] E. M. Nyakeri, H. J. O. Ogola, M. A. Ayieko, and F. A. Amimo, “Valorisation of organic waste material: Growth performance of wild black soldier fly larvae (Hermetia illucens) reared on different organic wastes,” Journal of Insects as Food and Feed, vol. 3, no. 3, 2017, doi: 10.3920/jiff2017.0004.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Avances: Investigación en Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
