Intensificación de la transferencia de calor en ebullición convectiva

Autores/as

  • José Luís Ramírez Pontificia Universidad Javeriana Cali

DOI:

https://doi.org/10.18041/1794-4953/avances.1.1327

Palabras clave:

Eficiencia energética, fenómenos convectivos, intercambiadores de calor, intensificación de transferencia de calor

Resumen

Los procesos de cambio de fase en flujos en ebullición son procesos que tienen mayores coeficientes de película que los casos que involucran fluidos monofásicos. Existe un crecimiento exponencial de la demanda de eficiencia de los sistemas térmicos, especialmente para las aplicaciones de refrigeración, aire acondicionado y generación de energía por vapor. Esto se debe a los aumentos en los precios de combustibles y al aumento de normas en el uso eficiente de la energía como consecuencia del cambio climático y los ahorros en infraestructura energética. Dado el creciente interés en las últimas décadas en las técnicas de intensificación de calor, el presente trabajo muestra las técnicas pasivas y activas más utilizadas en la intensificación de calor que son utilizadas para mejorar el intercambio de calor mediante ebullición convectiva.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

L. M. Chang, L. B. Wang, K. W. Song, D. L. Sun y J. F. Fan, “Numerical study of the relationship between heat

transfer enhancement and absolute vorticity flux along main flow direction in a channel formed by a flat tube bank fin with vortex generators”. International Journal of Heat and Mass Transfer, vol. 52, no. 7-8, pp. 1794-1801, mzo. 2009.

M. Sheikholeslami, M. Gorji-Bandpy y D. D., “Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices”, Renewable and Sustainable Energy Reviews, vol. 49, pp. 444-469, sept. 2015.

T. Alam y M. H. Kim, “A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications”, Renewable and Sustainable Energy Reviews, vol. 81, pp. 813-839, en. 2018.

Y. A. Cengel, Transferencia de calor y masa, 3.a ed. Mexico: McGraw-Hill, 2007.

N. Zhang y Y. Choi, “A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea”, Energy Policy, vol. 62, pp. 324-332, nov. 2013.

H. Kanneganti, B. Gopalakrishnan, E. Crowe, O. Al-Shebeeb, T. Yelamanchi, A. Nimbarte, K. Currie y A. Abolhassani, “Specification of energy assessment methodologies to satisfy ISO 50001 energy management standard”, Sustainable Energy Technologies and Assessments, vol. 23, pp. 121-135, oct. 2017.

A. E. Bergles, “Recent developments in enhanced heat transfer”, Heat and Mass Transfer, vol. 47, no. 8, p. 1001, ago. 2011.

C. B., Chiou, D. C. Lu y C. H. Chiou, “A new correlation of forced convective boiling for pure and mixed refrigerants in horizontal smooth tuve”, Applied Thermal Engineering, vol. 29, pp. 1864-1871, 2009.

J. H. Lienhard, A heat transfer textbook, 3.a ed. Cambridge. Phlogiston Press, 2008.

R. L. Webb, Principles of enhanced heat transfer. Nueva York: Wiley, 1997.

A. E. Bergles, “ExHFT for fourth generation heat transfer technology”, Experimental Thermal and Fluid Science, vol. 26, no. 2-4, pp. 335-344,jun. 2002.

S. Yoshida, T. Matsunaga, H. P. Hong y K. Nishikawa, “Heat transfer to refrigerants in horizontal evaporator tubes with internal, spiral grooves”, en Proceedings of the 1987 ASMEJSME Thermal Engineering Joint Conference, 1987.

S. J. Eckels y M. B. Pate, “Evaporation and condensation of HFC-134a and CFC-12 in a smooth tube and a micro-fin tubes”, ASHRAE Transactions, vol. 97, no. 2, pp. 71-81, 1991.

M. H. Kim y J. S. Shin, “Evaporating heat transfer of R22 and R410A in horizontal smooth and microfin tubes”, International Journal of Refrigeration, vol. 28, no. 6, pp. 940-948, 2005.

Chiang, R., “Heat transfer and pressure drop during evaporation and condensation of refrigerant-22 in 7.5 mm diameter axial and helical grooved tubes”, AIChE Symposium Series, vol. 89, no. 295, pp. 205-210, 1993.

C. C. Wang, C. B. Chiou y D. C. Lu, “Single phase heat transfer and flow friction correlations for microfin tubes”, International Journal of Heat and Fluid Flow, vol. 17, no. 5, 500-508, 1996.

A. Greco, “Convective boiling of pure and mixed refrigerants: An experimental study of the major parameters affecting heat transfer”, International Journal of Heat and Mass Transfer, vol. 51, no. 3-4, pp. 896-909, febr. 2008.

A. Diani, S. Mancin y L. Rossetto, “R1234ze(E) flow boiling inside a 3.4 mm ID microfin tube”, International Journal of Refrigeration, vol. 47, pp. 105-119, nov. 2014.

E. P. Bandarra Filho, J. M. Sainz Jabardo y P. E. Barbieri, “Convective boiling pressure drop of refrigerant R-134a in horizontal smooth and microfin tubes!, International Journal of Refrigeration, vol. 27, no. 8, pp. 895-903, 2004.

A. E. Bergles y Y. A. Kuzma-Kichta, “Enhancement of heat transfer in swirled boiling flows”, Heat Transfer Research, vol. 40, no. 7, pp. 613-642, 2009.

F. P. Incropera y D. P. DeWitt, Fundamentos de transferencia de calor. Mexico: Pearson Educacion, 1999.

A. Hasanpour, M. Farhadi y K. Sedighi, “A review study on twisted tape inserts on turbulent flow heat exchangers: The overall enhancement ratio criteria”, International Communications in Heat and Mass Transfer, vol. 55, pp. 53-62, jul. 2014.

A. Harles, Franz E. y Breuer M., “Heat transfer and friction characteristics of fully developed gas flow in crosscorrugated tubes”, International Journal of Heat and Mass Transfer, vol. 107, pp. 1076-1084, abr. 2017.

S. Yilmaz, J. J. Hwalek y J. W. Westwater, “Pool boiling heat transfer performance for commercial enhanced tube surfaces”, en Presented at 19 th National Heat Transfer Conference, American Society of Mechanical Engineers, Orlando, 1980.

B. Kumar, G. P. Srivastava, M. Kumar y A. K. Patil, “A review of heat transfer and fluid flow mechanism in heat exchange tube with inserts”, Chemical Engineering and Processing: Process Intensification, vol. 123, pp. 126-137, en. 2018.

N. Zhang y Y. Du, “Ultrasonic enhancement on heat transfer of palmitic-stearic acid as PCM in unit by experimental study”, Sustainable Cities and Society, vol. 43, pp. 532-537, nov. 2018.

H. Sadek, A. J. Robinson, J. S. Cotton, C. Y. Ching y M. Shoukri, “Electrohydrodynamic enhancement of in-tube convective condensation heat transfer”, International Journal of Heat and Mass Transfer, vol. 49, no. 9-10, pp. 1647-1657, 2006.

S. W. Chen, F. C. Liu, H. J. Lin, P. S. Ruan, Y. T. Su, Y. C. Weng, J.-R. Wangac, J.-D. Leed y W. K. Lin, “Experimental test and empirical correlation development for heat transfer enhancement under ultrasonic vibration”, Applied Thermal Engineering, vol. 143, pp. 639-649, oct. 2018.

N. P. Dhanalakshmi, R. Nagarajan, N. Sivagaminathan y Prasad, B. V. S. S. S., “Acoustic enhancement of heat transfer in furnace tubes”, Chemical Engineering and Processing: Process Intensification, vol. 59, pp. 36-42, sep. 2012.

Z. Douglas, T. R. Boziuk, M. K. Smith y A. Glezer, “Acoustically enhanced boiling heat transfer”, Physics of Fluids, vol. 24, no. 5, 052105, 2012.

F. Xin, Z. Liu, N. Zheng, P. Liu y W. Liu, “Numerical study on flow characteristics and heat transfer enhancement of oscillatory flow in a spirally corrugated tube”, International Journal of Heat and Mass Transfer, vol. 127, pp. 402-413, dic. 2018.

J. C. Khanpara, A. E. Bergle y M. B. Pate, “ugmentation of R-113 in-tube evaporation with micro-fin tubes”, ASHRAE Transactions, vol. 92, no. 2B, pp. 506-524, jun. 1986.

D. G. Kumbhar y N. K. Sane, “Heat transfer enhancement in a circular tube twisted with swirl generator: A review”, en Proceedings of the 3rd International Conference on Advances in Civil, Structural and Mechanical Engineering, National Institute of Technology, Gujarat, India, 2010.

H. Sadek, C. Y. Ching y J. Cotton, “The effect of pulsed electric fields on horizontal tube side convective condensation”, International Journal of Heat and Mass Transfer, vol. 53, no. 19-20, pp. 3721-3732, sept. 2010.

S. Eiamsa-ard y K. Kiatkittipong, “Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid”, Applied Thermal Engineering, vol. 70, no. 1, pp. 896-924, sept. 2014.

L. M. Schlager, M. B. Pate y A. E. Bergles, “Evaporation and condensation heat transfer and pressure drop in horizontal, 12.7-mm microfin tubes with refrigerant 22”, Journal of Heat Transfer, vol. 112, no. 4, pp. 1041-1047, nov. 1990.

Descargas

Publicado

2018-12-25

Cómo citar

Ramírez, J. L. (2018). Intensificación de la transferencia de calor en ebullición convectiva. Avances Investigación En Ingeniería, 15(1), 86-102. https://doi.org/10.18041/1794-4953/avances.1.1327