Artificial intelligence in higher education: an ethical-legal examination ofits transformative perspective
DOI:
https://doi.org/10.18041/2215-8944/academia.30.12707Keywords:
Ethics, artificial intelligence, academic resultsAbstract
The study arises from the progressive integration of Artificial Intelligence (AI) in university
education and its ethical-legal influence. Addresses the need for empirical demonstration of the
impact of AI tools on academic outcomes. Despite the multitude of studies examining the effects
of AI on teaching and learning, few have focused on its actual use by university students and
whether this use affects their academic performance. A quantitative correlational method and
simple random sampling were used to survey students from the daytime and evening law program.
The data were analyzed using ANOVA (Analysis of Variance), revealing generational differences
in technological competence. The younger generation exhibited 91% positive results from using
AI, while the older generation showed a 100% negative impact. These findings indicate that the
relationship between AI use and academic outcomes depends on factors beyond simple use and is
influenced by students' interests, which may not always be aligned with academics.
References
Bostrom Net, N. (2016). Superinteligencia: Caminos, Peligros, Estrategias. Editorial Teell S.L.
Botero Arbeláez, Mendoza Vargas, J & Arbeláez Salazar, O (2007). Método anova utilizado para realizar el estudio de repetitividad y reproducibilidad dentro del control de calidad de un sistema de medición. Revista Scientia et Technica Año XIII, No 3. Obtenido de file:///C:/Users/UFPSO/Downloads/Dialnet-MetodoAnovaUtilizadoParaRealizarElEstudioDeRepetib-4787724.pdf
Creswell Ward, J. David Creswell, J (2018). Research Design: Qualitative, Quantitative and Mixed Methods Approaches (4th ed.). Ediciones SAGE. Obtenido de https://spada.uns.ac.id/pluginfile.php/510378/mod_resource/content/1/creswell.pdf
Cowls Josh, King. Taddeo, Mariarosaria, T. & Floridi Luciano (2019) Designing AI for Social Good: Seven Essential Factors, Revista Available at SSRN: doi http://dx.doi.org/10.2139/ssrn.3388669
Dignum Ferreira, V. (2019). Responsible Artificial Intelligence: How to How to Develop and Use AI in a Responsible Way. Editorial Springer.
European Union . (2021). Proposal for a Regulation of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain Union legislative acts. Official Jornal of the European Union. Obtendio de https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206
Floridi, L. (2013). The ethics of information. Oxford University Press, doi https://doi.org/10.1093/acprof:oso/9780199641321.001.0001
Floridi Luciano, L, & Cowls, J. (2022).). A unified framework of five principles for AI in society. Machine learning and the city: Applications in architecture and urban design. Revista Harvard Data Science Review 535-545 doi https://doi.org/10.1162/99608f92.8cd550d1
García Peñalvo, F. (2018). Identidad digital como investigadores. La evidencia y la transparencia de la producción científica. Revista Education in the Knowledge Society (EKS), 19(2), 7–28. https://doi.org/10.14201/eks2018192728
Gartner Karl, W (2021). How Generation X Leaders are Leveraging Artificial Intelligence for Business Success. Gartner Research. Obtenido de https://www.gartner.com/en/insights/generative-ai-for-business
Wordmar Vaughan, J, Gebru, T, Veccione B, & Morgenster, J (2018). Datasheets for Datasets. Revista Communications of the ACM 64(12), 86 - 92 https://doi.org/10.1145/34587
Goodman, B., & Flaxman, S. (2017). European Union regulations on algorithmic decision-making and a “right to explanation”. Revista AI magazine, 38(3), 50-57., 50-57 https://doi.org/10.1609/aimag.v38i3.2741.
Luckin, R., & Holmes, W. (2016). Intelligence Unleashed: An argument for AI in Education. Ediciones Person. Obtenido de https://www.researchgate.net/publication/299561597_Intelligence_Unleashed_An_argument_for_AI_in_Education
MinTIC. (2021). Marco ético para la inteligencia artificial en Colombia. Ministerio der Tecnologías de la Información y las Comunicaciones. Obtenido de https://minciencias.gov.co/sites/default/files/marco-etico-ia-colombia-2021.pdf
Muro Mark, M. Maxim, R & Whiton, J (2019). Automation and Artificial Intelligence: How machines are affecting people and places. Obtenido de https://www.brookings.edu/articles/automation-and-artificial-intelligence-how-machines-affect-people-and-places/
O´neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown Publishing Group.
Pacheco Mendoza S., Ladaysé Mayorga, A. Fernández Ernesto, J & Guevara, C. (2023). Inteligencia artificial en la educación superior: un modelo predictivo del rendimiento académico. Revista Ciencias de la Educación 13(10), 990 https://doi.org/10.3390/educsci13100990
Popenici Stefan., & Kerr, Sharon (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning 12(1), 22 https://telrp.springeropen.com/articles/10.1186/s41039-017-0062-8
Rendón Peña, A. (2019). Robot-Proof: Higher Education in the age of artificial intelligence. Revista Innovación Educativa vol. 19, núm. 80, 181-183. Obtenido de https://www.redalyc.org/journal/1794/179462794010/
Russell, S. (2019). Human Compatible: Artificial Intelligence and the Problem of Control. Oxford University Press.
Scherer Matthew U. (2016). Regulating Artificial Intelligence Systems: Risks, Challenges, Competencies, and Strategies. Revista Harvard Journal of Law & Technology, Vol. 29, No. 2, 48 http://dx.doi.org/10.2139/ssrn.2609777
UNESCO. (2021). Recommendation on the ethics of artificial intelligence. Obtenido de https://www.unesco.org/en/articles/recommendation-ethics-artificial-intelligence
Zuboff, Shoshana S. & Nicol Zanzarella, S (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. New York: PublicAffairs.