Design of a Deep Learning Model to Automate Container Entry and Exit at the Cartagena Container Terminal (CONTECAR)

Autores/as

  • Víctor Hugo Medina-Flórez Universidad Autónoma del Caribe
  • Damaris Sanchez-Rojas Corporación Universitaria Reformada
  • Orestes Martínez-Sosa Universidad Autónoma del Caribe
  • Armando Elias Robledo-Acosta Universidad Autónoma del Caribe

DOI:

https://doi.org/10.18041/2619-4244/dl.36.12539

Palabras clave:

Port terminal, Deep Learning, Artificial Intelligence, OCR, RFID, Logistics automation, Container tracking

Resumen

In ports, process automation such as container identification using technologies such as Optical Character Recognition (OCR) and Radio Frequency Identification (RFID) is essential to speed up operations and reduce human error. The implementation of these systems not only increases competitiveness and security, but also minimizes operational risks and improves agility in the management of logistics flows, which is crucial to adapt to growing demand and ensure the sustainability of port infrastructures.

The present mixed research aims to design a deep learning model to optimize the container entry and exit processes at the Cartagena Container Terminal (CONTECAR). The model will be designed considering the existing infrastructure, technologies implemented to date, available machinery and logistical and organizational characteristics of terminal operating processes.

Biografía del autor/a

  • Víctor Hugo Medina-Flórez, Universidad Autónoma del Caribe

    Last level of training Institutional affiliation

  • Damaris Sanchez-Rojas, Corporación Universitaria Reformada

    Part-time lecturer and Researcher at the Reformada University Corporation. 

  • Orestes Martínez-Sosa, Universidad Autónoma del Caribe

    Lecturer and Researcher at the Autonomous University of the Caribbean

  • Armando Elias Robledo-Acosta, Universidad Autónoma del Caribe

    Phd at Management sciences, at the University of the Caribbean 

Referencias

Aguirre Olmos, D. A. (2018). Characterization of the strategies implemented to increase the competitiveness of port logistics in Colombia: Case Maritime Port of Cartagena. Bogotá: National University of Colombia.

Amazon. (January 2025). Amazon: What is optical character recognition (OCR)? Obtained from Amazon: https://aws.amazon.com/es/what-is/ocr/

Port Authority of the Bay of Algeciras. (2023). Practical Application of Digital Twin an AI at the Port of Algeciras: A Pilot for Optimizing Ferry Operations. SDP North America 2023. Obtained from chrome-extension://efaidnbmnnibpcajpcglclefindmkaj/https://innovacion.apba.es/wp-content/uploads/2023/12/000_PTI135_Nextport_v3.pdf

Barleta, E. P., Pérez, G., & Sánchez, R. J. (2019). The industrial revolution 4.0 and the advent of a logistics 4.0. FAL, 1-16.

Bo, Y., & Junqing, M. (2020). Research on the Construction of Knowledge Service Model of Port Supply Chain Enterprise in Big Data Environment. Journal of Physics: Conference Series, 1-7. doi:doi:10.1088/1742-6596/1550/3/032170

Cao, Q., & Zheng, X. (2024). Application of Artificial Intelligence Technology in the Supervision of Customs Clearance Machine Inspection. World Customs Journal, 18(2). doi:https://doi.org/10.55596/001c.122754

Carlan, V., Sys, C., Calatayud, A., & Vanelslander, T. (2018). Digital Innovation in Maritime Supply Chains: Experiences from Northwestern Europe. Inter-American Development Bank.

ECLAC. (2019). The industrial revolution 4.0 and the advent of a logistics 4.0. FAL 375 (pp. 1-16). United Nations.

Cho, H., Park, H., Kim, I.-J., & Cho, J. (2021). Data Augmentation of Backscatter X-ray Images for Deep Learning-Based Automatic Cargo Inspection. Sensors, 2-20. doi:https://doi.org/10.3390/s21217294

Cimili, P., Voegl, J., Hirsch, P., & Gronalt, M. (2022). Automated damage detection of trailers at intermodal terminals using deep learning. 24th International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation, HMS. doi:10.46354/i3m.2022.hms.003

Siport21 Consortium . (January 2025). project: compass+. Obtained from Siport21: https://siport21.com/en/proyecto/compass/

CONTECAR. (2024). Cartagena Port: Management Report 2023. Obtained from chrome-extension://efaidnbmnnibpcajpcglclefindmkaj/https://www.puertocartagena.com/sites/default/files/2024-05/Contecar%202023.pdf

Du, X. (2023). Research on the path of artificial intelligence to empower intelligent port upgrading and transformation. E3S Web of Conferences 372, 1-4. doi:https://doi.org/10.1051/e3sconf/202337202001

Valenciaport Foundation. (2020). Manual of smart ports strategy and roadmap. Inter-American Development Bank.

Cartagena Port Group. (02 of 01 of 2025). Home: SPRCOnLine. Obtained from Cartagena Port: https://www.puertocartagena.com/es/sprc-online

Cartagena Port Group. (20 de 01 de 2025). Who we are: Infrastructure. Obtained from Puerto de Cartagena Web Site: https://www.puertocartagena.com/es/nosotros/quienes-somos/infraestructura

Hirata, E., Watanabe, D., & Lambrou, M. (2022). Shipping Digitalization and Automation for the Smart Port. Intechopen, 1-21.

Holdsworth, J., & Scapicchio, M. (17 de Junio de 2024). topics: deep learning. Obtained from IBM: https://www.ibm.com/es-es/topics/deep-learning

Jaccard, N., Rogers, T. W., Norton, E. J., & Griffin, L. D. (2016). Tackling the X-ray cargo inspection challenge using machine learning. SPIE Defense + Security. Proceedings of SPIE - The International Society for Optical Engineering.

Li, A., Zhuang, S., Yang, T., Wenran, L., & Xu, J. H. (2024). Optimization of Logistics Cargo Tracking and Transportation Efficiency based on Data Science Deep Learning Models. Preprints.org, 71-77. doi:doi:10.20944/preprints202407.1428.v1

Licu, D.-V. (2020). Automatic container code identification using Machine Learning. University of Twente.

Puerto de Cartagena. (2022). responsabilidad social empresarial/gestion ambiental: Puerto de Cartagena. Obtenido de Puerto de Cartagena web site: https://www.puertocartagena.com/es/inicio/responsabilidad-social-empresarial/gestion-ambiental

Rubio Villalba, I. (2020). Analysis of the OCR System Application in Intermodal Terminals. Malmö Intermodal Terminal (Sweden). Valencia: Universitat Politècnica de València. Obtenido de http://hdl.handle.net/10251/165816

Shashirangana, J., Padmasiri, H., Meedeniya, D., & Perera, C. (2020). Automated License Plate Recognition: A Survey on Methods and Techniques. IEEEAccess. doi:10.1109/ACCESS.2020.3047929

Shih-Liang, C., Ya-Lan, & Lin. (2017). Gate automation system evaluation A case of a container number recognition system in port terminals. Maritime Business Review, 21-35.

Superintendencia de Transporte Colombiana. (2023). Boletín Estadístico: Trafico Portuario en Colombia año 2022. Bogotá.

Takahashi, H., & Goto, K. (2007). Study on Inflection to the Port and Harbour Development by AIS DATA. Tecnical Note of NILIM, 01-89.

Tang, C., Chen, P., & Li, Y. (2020). Automatic Damage-Detecting System for Port Container Gate Based on AI. (págs. 146-151). Xiamen: Association for Computing Machinery. doi:https://doi.org/10.1145/3436369.3436480

Telefónica. (Enero de 2025). Servicios: Casos de Uso 5g, acceso de seguridad inteligente para puerto de bilbao. Obtenido de Telefonica: https://www.telefonica.es/es/servicios/casos-de-uso-5g/acceso-de-seguridad-inteligente-para-puerto-de-bilbao/

Tsiulin, S., & Hegner Reinau, K. (2021). The Rol of Port Authority in New Blockchain Scenarios for Maritime Port Management: Case of Denmark. Transportation Reserch Procedia, 388-395.

Vaca-Recalde, M. E., Marcano, M., Matute, J., Hidalgo, C., Martinez-Rodriguez, B., Bilbao-Arechabala, S., . . . Camacho, A. (2024). Connected and Intelligent Framework for Vehicle Automation in Smart-Ports. IEEEAccess, 120347-120361.

Wang, M., Guo, X., She, Y., Zhou, Y., Liang, M., & Chen, Z. S. (2024). Advancements in Deep Learning Techniques for Time Series Forecasting in Maritime Applications: A Comprehensive Review. Information, 2-33. doi:https://doi.org/10.3390/info15080507

Weihong, W., & Jiaoyang, T. (2020). Research on License Plate Recognition Algorithms Based on Deep Learning in Complex Environment. IEEEAccess, 91661-91675. doi:10.1109/ACCESS.2020.2994287

Zhichao, Z., Yi, D., Rui, L., & Kaimin, C. (2024). Enhancing OCR with line segmentation maskfor container text recognition in container terminal. Engineering Applications of Artifi cialIntelligence. Obtenido de https://doi.org/10.1016/j.engappai

Publicado

2025-04-18

Número

Sección

Artículos de investigación científica y tecnológica

Artículos similares

1-10 de 277

También puede Iniciar una búsqueda de similitud avanzada para este artículo.