Plant molecular farming

Authors

  • Dora Janeth García J. Universidad de California Riverside

Keywords:

Biotechnology, recombinants proteins, transgenic plants, ant molecular farming, genetic engineer, Agrobacterium tumefaciens

Abstract

Plants have been used for centuries for medical purposes. Currently, plant biotechnology has expanded the development of genetic engineering tools, molecular biology, tissue culture and fermentation techniques have allowed the growth of cells and organisms under controlled conditions, enabling the production of materials for clinical and industrial potential. “Plant molecular farming” is a new branch of biotechnology where the plants through genetic engineering are modified to produce therapeutic proteins such as vaccines, cytokines, antibodies, growth factors and enzymes while reducing contamination risks, time and productions costs.

Downloads

Download data is not yet available.

References

1. Alderborn A. Sundström J., Soeria- Atmadja D., Sandberg M., Andersson H.C. and Hammerling U. (2010). Genetically modified plants for non-food or non-feed purposes: Straightforward screening for their appearance in food and feed. Food and Chemical Toxicology; 48:453- 464.

2. Barta A, Sommengruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJM. (1986). The expression of a napoline synthase human growth hormone chimeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol;6:347–57.

3. Beachy RN, Fitchen JH and Hein MB. (1996). Use of plant viruses for delivery of vaccine epitopes. Ann NY Acad Sci; 792:43–49.

4. Bevan MW, Flavell RB, Chilton MD. (1983). A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature;304:184–7.

5. Brennan FR, Bellaby T, Helliwell SM, Jones TD, Kamstrup S, Dalsgaard K, Flock JI and Hamilton WD. (1999). Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice. J Virol;73:930–938.

6. Bravo AF, Wirth S, Segretin ME y Morgenfeld M. (2005). Las plantas como fábricas de proteínas terapeúticas. INGEBI-UBA-CONICET. Pp 40-43.

7. Chikwamba R, McMurray J, Shou H, Frame B, Pegg SE, Scott P, et al. (2002). Expression of a synthetic E. coli heatlabile enterotoxin B sub-unit (LT-B) in maize. Mol Breed;10:253–65.

8. Daniell H, Lee SB, Panchal T, Wiebe PO. (2001). Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol;311:1001–9.

9. De Muynck B, Navarre C, Nizet Y, Stadlmann J, Boutry M. (2009). Different subcellular localization and glycosylation for a functional antibody expressed in Nicotiana tabacum plants and suspension cells. Transgenic Res;18:467–82.

10. Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling H et al. (2001). Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323–2328

11. He Z, Jiang XL, Qi Y, Di QL. (2008). Assessment of the utility of the tomato fruit-specific E8 promoter for driving vaccine antigen expression. Genetica;133:207–14.

12. Hiatt A, Cafferkey R, Bowdish K.(1989). Production of antibodies in transgenic plants. Nature; 342:76–8.

13. Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M, et al. (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extractio and purification. Mol Breed;3:291–306.

14. Huang Z, Dry I, Webster D, Strugnell R and Wesselingh S. (2001). Plantderived measles virus hemagglutinin protein induces neutralizing antibodies in mice. Vaccine; 19: 2163–2171.

15. Kapila J, De Rycke R, van Montagu M, Angenon G. (1997). An agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 122:101–8.

16. Kumar GBS, Ganapathi TR, Revathi CJ, Srinivas L, Bapat VA. (2005). Expression of hepatitis B surface antigen in transgenic banana plants. Planta;222:484–93.

17. Lau OS, Sun SSM. (2009). Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv. 27:1015–22.

18. Lauterslager TGM, Florack DEA, Van der Wal TJ, Molthoff JW, Langeveld JP, Bosch D, et al. (2001). Oral immunization of naïve and primed animals with transgenic potato tubes expressing LT-B. Vaccine. 19:2749– 55.

19. Lentz EM, Segretin ME, Morgenfeld MM, Wirth SA, Santos MJD, Mozgovoj MV, et al. (2010). High expression level of a foot and mouth disease virus epitope in tobacco transplastomic plants. Planta. 231:387–95.

20. Levit G, Rodríguez SM. (2008). Uso de la albúmina en la práctica clínica. Publicaciones originales. Universidad del Rosario. Santa Fe. Republica Argentina. Pp 1-2.

21. Liénard D, Sourrouille C, Gomord V, Faye L. (2007). Pharming and transgenic plants. Biotechnol. Ann Rev 2007;13:115–47.

22. Ling H-Y, Pelosi A, Walmsley AM. (2010). Current status of plant-made vaccines for veterinary purposes. Expert Rev Vaccin;9:971–82.

23. Ma JK, Drake PM, Christou P. (2003). The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet; 4:794–805.

24. McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, Koprowski H and Michaels FH. (1995). Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology (NY). 13:1484–1487.

25. Mishra S, Yadav DK, Tuli R. (2006). Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plantexpressed protein binds GM1 receptors more efficiently. J Biotechnol; 127:95-108.

26. Molina M. I. (2008). Vacunas transgénicas. http://www.uned.es/ experto-biotecnologia-alimentos/ TrabajosSelecc/IsabelMolina.pdf

27. Naqvi S. Ramessar K, Farré G, Sabalza M, Miralpeix B, Twyman R, Capell T, Zhu Ch., Christou P. (2011). Highvalue products from transgenic maize. Biotechnology Advances 29:40-53.

28. Nochi T, Takagi H, Yuki Y, Yang L, Masumura T, Mejima M, et al. (2007). Rice-based mucosal vaccine as a global strategy for cold-chainand needle-free vaccination. Proc NatlAcad Sci USA;104:10986–91.

29. Obembe O., Popoola J., Leelavathi S., and Reddy S.. (2010) Advances in plant molecular farming. Biotechnology Advances. 29:2. 210- 222.

30. Oey M, Lohse M, Kreikemeyer B, Bock R. (2009). Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J;57: 436–45.

31. Richter LJ, Thanavala Y, Arntzen CJ, Mason HS. (2000). Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat Biotechnol;18:1167–71.

32. Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Alpuche- Solís ÁG, Martínez- González L, Korban SS. (2010). Expression of an immunogenic F1-V fusion protein in lettuce as a plant-based vaccine against plague. Planta, doi:10.1007/ s00425-010-1176-z.

33. Satyavathi VV, Prasad V, Khandelwal A, Shaila MS, Sita GL.( 2003). Expression of hemagglutinin protein of rinderpest virus in transgenic pigeon pea [Cajanus cajan (L.)]. Millsp. 34. Plant Cell Rep;21:651–8.

34. Sojikul P, Buehner N, Mason HS. (2003). A plant signal peptide hepatitis B surface antigen fusion protein with enhanced stability and immunogenicity expressed in plant cells. Proc. Natl Acad Sci USA;100:2209–14.

35. Tackaberry ES, DudaniAK, Prior F, Tocchi M, Sardana R, Altosaar I and Ganz PR. (1999). Development of biopharmaceuticals in plant expression systems: cloning, expression and immunological reactivity of human cytomegalovirus glycoprotein B (UL55) in seeds of transgenic tobacco. Vaccine;17:3020–3029.

36. Turpen T, Reinl S, Charoenvit Y, Hoffman S, Fallarme V and Grill L. (1995). Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. Biotechnology (NY);13.

37. Twyman R.M., Christou Paul, and Stoger Eva. Genetic Transformation of Plants and Their Cells (2002). Molecular Biotechnology Unit, John Innes Centre, Norwich,United Kingdom.

Downloads

Published

2010-12-01