Dectin 1a orquesta respuestas complejas en linajes inmunocompetentes: hacia β-Glucanos de origen fúngico

Autores/as

DOI:

https://doi.org/10.18041/2390-0512/biociencias.2.11541

Palabras clave:

Betaglucano, hongos, levaduras, inmunidad innata, receptores, Dectin1

Resumen

En hongos, los β-Glucanos (bG), compuestos por glucosa, desempeñan diversas funciones como componentes de matrices extracelulares y reservas de energía. El interés por su estudio se debe a sus propiedades inmunomoduladoras y antitumorales. La presente revisión presenta, en forma comprensible, las interacciones moleculares detrás de estos efectos que aún se comprenden de manera limitada, por lo que existe un vacío de conocimiento relacionado con sus mecanismos y los efectos en seres humanos. Un aspecto relevante encontrado mediante la exploración no sistemática de la literatura es la dinámica ligando-receptor entre β-Glucanos (bG) y Receptores de Patrones Moleculares (PRRs) clave en su reconocimiento, como Dectin1 y el Receptor de Complemento de Membrana Tipo 3 (CR3), por separado y en conjunto. Así, se demostró que bG, Dectin1 y CR3 orquestan una respuesta inmunológica celular. Es fundamental reconocer la necesidad de un estándar de control de peso molecular específico y mayor investigación sobre receptores de β-glucano, como CR3.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

Referencias

Yan J, Han Z, Qu Y, Yao C, Shen D, Tai G, et al. Structure elucidation and immuno-modulatory activity of a β-glucan derived from the fruiting bodies of Amillariella mellea. Food Chem. 2018 Feb; 240:534–43.

Złotko K, Wiater A, Waśko A, Pleszczyńska M, Paduch R, Jaroszuk-Ściseł J, et al. A Report on Fungal (1→3)-α-d-glucans: Properties, Functions and Application. Mole-cules. 2019 Nov 2;24(21):3972.

Ruiz-Herrera J, Ortiz-Castellanos L. Cell wall glucans of fungi. A review. The Cell Surface. 2019 Dec; 5:100022.

Kono, H., Kondo, N., Hirabayashi, K., Ogata, M., Totani, K., Ikematsu, S., & Osada, M. (2017). NMR spectroscopic structural characterization of a water-soluble β-(1 → 3, 1 → 6)-glucan from Aureobasidium pullulans. Carbohydrate Polymers, 174, 876–886. doi: 10.1016/j.carbpol.2017.07.018

Moreno-Mendieta S, Guillén D, Hernández-Pando R, Sánchez S, Rodríguez-Sanoja R. Potential of glucans as vaccine adjuvants: A review of the α-glucans case. Carbohydr Polym. 2017 Jun; 165:103–14.

Wu L, Zhao J, Zhang X, Liu S, Zhao C. Antitumor effect of soluble β-glucan as an immune stimulant. Int J Biol Macromol. 2021 May; 179:116–24.

Jesenak M, Banovcin P, Rennerova Z, Majtan J. β-Glucans in the treatment and pre-vention of allergic diseases. Allergol Immunopathol (Madr). 2014 Mar;42(2):149–56.

Chaichian S, Moazzami B, Sadoughi F, Haddad Kashani H, Zaroudi M, Asemi Z. Functional activities of beta-glucans in the prevention or treatment of cervical cancer. J Ovarian Res. 2020 Dec 5;13(1):24.

Mogensen TH. Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clin Microbiol Rev. 2009 Apr;22(2):240–73.

Schmid, F., Stone, B. A., Brownlee, R. T. C., McDougall, B. M., & Seviour, R. J. (2006). Structure and assembly of epiglucan, the extracellular (1→3;1→6)-β-glucan produced by the fungus Epicoccum nigrum strain F19. Carbohydrate Research, 341(3), 365–373. doi: 10.1016/j.carres.2005.10.013

Kucuksezer UC, Ozdemir C, Akdis M, Akdis CA. Influence of Innate Immunity on Immune Tolerance. Acta Med Acad. 2020 Nov 11;49(2):164.

Synytsya A, Novak M. Structural analysis of glucans. Ann Transl Med. 2014 Feb;2(2):17.

Huang G, Huang S. The structure–activity relationships of natural glucans. Phytother-apy Research. 2021 Jun 23;35(6):2890–901.

Aimanianda V, Simenel C, Garnaud C, Clavaud C, Tada R, Barbin L, et al. The Dual Activity Responsible for the Elongation and Branching of β-(1,3)-Glucan in the Fungal Cell Wall. mBio. 2017 Jul 5;8(3).

De Assis LJ, Bain JM, Liddle C, Leaves I, Hacker C, Peres da Silva R, et al. Nature of β-1,3-Glucan-Exposing Features on Candida albicans Cell Wall and Their Modulation. mBio. 2022 Dec 20;13(6).

Garfoot AL, Shen Q, Wüthrich M, Klein BS, Rappleye CA. The Eng1 β-Glucanase Enhances Histoplasma Virulence by Reducing β-Glucan Exposure. mBio. 2016 May 4;7(2).

Nyman AAT, Aachmann FL, Rise F, Ballance S, Samuelsen ABC. Structural charac-terization of a branched (1 → 6)-α-mannan and β-glucans isolated from the fruiting bodies of Cantharellus cibarius. Carbohydr Polym. 2016 Aug;146:197–207.

Su CH, Lu MK, Lu TJ, Lai MN, Ng LT. A (1→6)-Branched (1→4)-β- d -Glucan from Grifola frondosa Inhibits Lipopolysaccharide-Induced Cytokine Produc-tion in RAW264.7 Macrophages by Binding to TLR2 Rather than Dectin-1 or CR3 Receptors. J Nat Prod. 2020 Feb 28;83(2):231–42.

Noss I, Ozment TR, Graves BM, Kruppa MD, Rice PJ, Williams DL. Cellular and molecular mechanisms of fungal β-(1→6)-glucan in macrophages. Innate Immun. 2015 Oct 23;21(7):759–69.

Liu Y, Wang Y, Zhou S, Yan M, Tang Q, Zhang J. Structure and chain conformation of bioactive β-D-glucan purified from water extracts of Ganoderma lucidum unbroken spores. Int J Biol Macromol. 2021 Jun;180: 484–93.

Synytsya A, Novák M. Structural diversity of fungal glucans. Carbohydr Polym. 2013 Jan;92(1):792–809.

Han B, Baruah K, Cox E, Vanrompay D, Bossier P. Structure-Functional Activity Re-lationship of β-Glucans From the Perspective of Immunomodulation: A Mini-Review. Front Immunol. 2020 Apr 22;11.

Avramia I, Amariei S. Spent Brewer’s Yeast as a Source of Insoluble β-Glucans. Int J Mol Sci. 2021 Jan 15;22(2):825.

Zheng Z, Huang Q. New insight into the structure-dependent two-way immunomodu-latory effects of water-soluble yeast β-glucan in macrophages. Carbohydr Polym. 2022 Sep; 291:119569.

Miura N. Gradual solubilization of Candida cell wall β-glucan by oxidative degradation in mice. FEMS Immunol Med Microbiol. 1998 Jun;21(2):123–9.

Sahasrabudhe, N. M., Tian, L., van den Berg, M., Bruggeman, G., Bruininx, E., Schols, H. A., … de Vos, P. (2016). Endo-glucanase digestion of oat β-Glucan enhances Dec-tin-1 activation in human dendritic cells. Journal of Functional Foods, 21, 104–112. doi: 10.1016/j.jff.2015.11.037

Du B, Meenu M, Liu H, Xu B. A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. Int J Mol Sci. 2019 Aug 18;20(16):4032.

Lee K, Kwon Y, Hwang J, Choi Y, Kim K, Koo HJ, et al. Synthesis and Functionaliza-tion of β-Glucan Particles for the Effective Delivery of Doxorubicin Molecules. ACS Omega. 2019 Jan 31;4(1):668–74.

Chen H, Liu N, He F, Liu Q, Xu X. Specific β-glucans in chain conformations and their biological functions. Polym J. 2022 Apr 8;54(4):427–53.

Guo, X., Kang, J., Xu, Z., Guo, Q., Zhang, L., Ning, H., & Cui, S. W. (2021). Tri-ple-helix polysaccharides: Formation mechanisms and analytical methods. Carbohy-drate Polymers, 262, 117962. doi: 10.1016/j.carbpol.2021.117962

Iorio, E., Torosantucci, A., Bromuro, C., Chiani, P., Ferretti, A., Giannini, M., … Podo, F. (2008). Candida albicans cell wall comprises a branched β-d-(1→6)-glucan with β-d-(1→3)-side chains. Carbohydrate Research, 343(6), 1050–1061. doi: 10.1016/j.carres.2008.02.020

Zhang Y, Liu X, Zhao J, Wang J, Song Q, Zhao C. The phagocytic receptors of β-glucan. Int J Biol Macromol. 2022 Apr; 205:430–41.

Elder MJ, Webster SJ, Chee R, Williams DL, Hill Gaston JS, Goodall JC. β-Glucan Size Controls Dectin-1-Mediated Immune Responses in Human Dendritic Cells by Regulating IL-1β Production. Front Immunol. 2017 Jul 7;8.

Chen Tian, Wagner Andrew S., & Reynolds Todd B. (2022). When Is It Appropriate to Take Off the Mask? Signaling Pathways That Regulate ß(1,3)-Glucan Exposure in Candida albicans. Frontiers in Fungal Biology, 3. https://www.frontiersin.org/articles/10.3389/ffunb.2022.842501

O’Brien XM, Heflin KE, Lavigne LM, Yu K, Kim M, Salomon AR, et al. Lectin Site Ligation of CR3 Induces Conformational Changes and Signaling. Journal of Biological Chemistry. 2012 Jan;287(5):3337–48.

Lamers C, Plüss CJ, Ricklin D. The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front Immunol. 2021 Apr 29;12.

Qi C, Cai Y, Gunn L, Ding C, Li B, Kloecker G, et al. Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans. Blood. 2011 Jun 23;117(25):6825–36.

Li B, Allendorf DJ, Hansen R, Marroquin J, Ding C, Cramer DE, et al. Yeast β-Glucan Amplifies Phagocyte Killing of iC3b-Opsonized Tumor Cells via Complement Recep-tor 3-Syk-Phosphatidylinositol 3-Kinase Pathway. The Journal of Immunology. 2006 Aug 1;177(3):1661–9.

Freeman, S. A., & Grinstein, S. (2014). Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunological Reviews, 262(1), 193–215. doi:10.1111/imr.12212

Li M, Yu Y. Innate immune receptor clustering and its role in immune regulation. J Cell Sci. 2021 Feb 15;134(4).

Huang JH, Lin CY, Wu SY, Chen WY, Chu CL, Brown GD, et al. CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway. PLoS Pathog. 2015 Jul 1;11(7):e1004985.

Fischer M, Müller JP, Spies-Weisshart B, Gräfe C, Kurzai O, Hünniger K, et al. Iso-form localization of Dectin-1 regulates the signaling quality of anti-fungal immunity. Eur J Immunol. 2017 May;47(5):848–59.

Xu, S., Huo, J., Gunawan, M., Su, I.-H., Lam, K.-P. (2009). Activated Dectin-1 Lo-calizes to Lipid Raft Microdomains for Signaling and Activation of Phagocytosis and Cytokine Production in Dendritic Cells. Journal of Biological Chemistry, 284(33), 22005-22011. https://doi.org/10.1074/jbc.M109.009076

Kiichi Nakahira, Hong Pyo Kim, Xue Hui Geng, Atsunori Nakao, Xue Wang, Noriko Murase, Peter F. Drain, Xiaomei Wang, Madhu Sasidhar, Elizabeth G. Nabel, Toru Takahashi, Nicholas W. Lukacs, Stefan W. Ryter, Kiyoshi Morita, Augustine M.K. Choi; Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts . J Exp Med 2 October 2006; 203 (10): 2377–2389. doi: https://doi.org/10.1084/jem.20060845

Goldmann, M., Schmidt, F., Cseresnyés, Z., Orasch, T., Jahreis, S., Hartung, S., Figge, M. T., von Lilienfeld-Toal, M., Heinekamp, T., & Brakhage, A. A. (2023, January 31). The Lipid Raft-Associated Protein Stomatin Is Required for Accumulation of Dectin-1 in the Phagosomal Membrane and for Full Activity of Macrophages against Aspergil-lus fumigatus. mSphere, 8(1), e00523-22. https://doi.org/10.1128/msphere.00523-22

Bauer B, Steinle A. HemITAM: A single tyrosine motif that packs a punch. Sci Signal. 2017 Dec 5;10(508).

Zheng Z, Huang Q, Kang Y, Liu Y, Luo W. Different molecular sizes and chain con-formations of water-soluble yeast β-glucan fractions and their interactions with receptor Dectin-1. Carbohydr Polym. 2021 Dec; 273:118568.

Feng X, Li F, Ding M, Zhang R, Shi T, Lu Y, et al. Molecular dynamic simulation: Study on the recognition mechanism of linear β-(1 → 3)-D-glucan by Dectin-1. Carbohydr Polym. 2022 Jun;286.

Helen S. Goodridge, Randi M. Simmons, David M. Underhill; Dectin-1 Stimulation by Candida albicans Yeast or Zymosan Triggers NFAT Activation in Macrophages and Dendritic Cells1. J Immunol 1 March 2007; 178 (5): 3107–3115. https://doi.org/10.4049/jimmunol.178.5.3107

Kozłowska E, Brzezińska-Błaszczyk E, Rasmus P, Żelechowska P. Fungal β-glucans and mannan stimulate peripheral blood mononuclear cells to cytokine production in Syk-dependent manner. Immunobiology. 2020 Sep;225(5):151985.

Manavalan B, Basith S, Choi S. Similar Structures but Different Roles – An Updated Perspective on TLR Structures. Front Physiol. 2011;2.

Yamaguchi K, Kanno E, Tanno H, Sasaki A, Kitai Y, Miura T, et al. Distinct Roles for Dectin-1 and Dectin-2 in Skin Wound Healing and Neutrophilic Inflammatory Re-sponses. Journal of Investigative Dermatology. 2021 Jan;141(1):164-176.e8.

Liu M, Luo F, Ding C, Albeituni S, Hu X, Ma Y, et al. Dectin-1 Activation by a Natu-ral Product β-Glucan Converts Immunosuppressive Macrophages into an M1-like Phenotype. The Journal of Immunology. 2015 Nov 15;195(10):5055–65.

Fatima N, Upadhyay T, Ahmad F, Arshad M, Kamal MA, Sharma D, et al. Particulate β-glucan activates early and delayed phagosomal maturation and autophagy within macrophage in a NOX-2 dependent manner. Life Sci. 2021 Feb;266:118851.

Sharma R. Particulate beta-glucan induces early and late phagosomal maturation in mu-rine macrophages. Frontiers in Bioscience. 2017;9(1):791.

Kanjan P, Sahasrabudhe NM, de Haan BJ, de Vos P. Immune effects of β-glucan are determined by combined effects on Dectin-1, TLR2, 4 and 5. J Funct Foods. 2017 Oct;37.

Fang J, Wang Y, Lv X, Shen X, Ni X, Ding K. Structure of a β-glucan from Grifola frondosa and its antitumor effect by activating Dectin-1/Syk/NF-κB signaling. Gly-coconj J. 2012 Aug 29;29(5–6).

McCann, F., Carmona, E., Puri, V., Pagano, R. E., & Limper, A. H. (2005). Macro-phage internalization of fungal beta-glucans is not necessary for initiation of related in-flammatory responses. Infection and immunity, 73(10), 6340–6349. https://doi.org/10.1128/IAI.73.10.6340-6349.2005

Walachowski S, Tabouret G, Foucras G (2016) Triggering Dectin-1-Pathway Alone Is Not Sufficient to Induce Cytokine Production by Murine Macrophages. PLOS ONE 11(2): e0148464. https://doi.org/10.1371/journal.pone.0148464

Li W, Yan J, Yu Y. Geometrical reorganization of Dectin-1 and TLR2 on single phag-osomes alters their synergistic immune signaling. Proceedings of the National Academy of Sciences. 2019 Dec 10;116(50):25106–14.

Miao Li, Christopher Vultorius, Manisha Bethi, Yan Yu. Spatial organization of Dec-tin-1 and TLR2 during synergistic crosstalk revealed by super-resolution imaging bio-Rxiv 2022.04.25.489448; doi: https://doi.org/10.1101/2022.04.25.489448 Now pub-lished in The Journal of Physical Chemistry B doi: 10.1021/acs.jpcb.2c03557

Benjamin N. Gantner, Randi M. Simmons, Scott J. Canavera, Shizuo Akira, David M. Underhill; Collaborative Induction of Inflammatory Responses by Dectin-1 and Toll-like Receptor 2 J Exp Med 5 May 2003; 197 (9): 1107–1117. doi: https://doi.org/10.1084/jem.20021787

Gantner, B. N., Simmons, R. M., & Underhill, D. M. (2005). Dectin-1 mediates mac-rophage recognition of Candida albicans yeast but not filaments. The EMBO journal, 24(6), 1277–1286. https://doi.org/10.1038/sj.emboj.7600594

Gow, N. A., Netea, M. G., Munro, C. A., Ferwerda, G., Bates, S., Mora-Montes, H. M., Walker, L., Jansen, T., Jacobs, L., Tsoni, V., Brown, G. D., Odds, F. C., Van der Meer, J. W., Brown, A. J., & Kullberg, B. J. (2007). Immune recognition of Candida albicans beta-glucan by dectin-1. The Journal of infectious diseases, 196(10), 1565–1571. https://doi.org/10.1086/523110

Bono, C., Martínez, A., Megías, J., Gozalbo, D., Yáñez, A., & Gil, M. L. (2020). Dec-tin-1 Stimulation of Hematopoietic Stem and Progenitor Cells Occurs In Vivo and Promotes Differentiation Toward Trained Macrophages via an Indirect Cell-Autonomous Mechanism. mBio, 11(3), e00781-20. https://doi.org/10.1128/mBio.00781-20

Megías, J., Martínez, A., Yáñez, A., Goodridge, H. S., Gozalbo, D., & Gil, M. L. (2016). TLR2, TLR4 and Dectin-1 signalling in hematopoietic stem and progenitor cells determines the antifungal phenotype of the macrophages they produce. Microbes and Infection, 18(5), 354–363. doi: 10.1016/j.micinf.2016.01.005

Ferwerda, G., Meyer-Wentrup, F., Kullberg, B.-J., Netea, M.G. and Adema, G.J. (2008), Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cellular Microbiology, 10: 2058-2066. https://doi.org/10.1111/j.1462-5822.2008.01188.x

Kumwenda, P., Cottier, F., Hendry, A. C., Kneafsey, D., Keevan, B., Gallagher, H., Tsai, H. J., & Hall, R. A. (2022). Estrogen promotes innate immune evasion of Can-dida albicans through inactivation of the alternative complement system. Cell reports, 38(1), 110183.

Rappleye, C. A., Eissenberg, L. G., & Goldman, W. E. (2007). Histoplasma capsula-tum -(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proceedings of the National Academy of Sciences, 104(4), 1366–1370. doi:10.1073/pnas.0609848104

Loures, F. V., Araújo, E. F., Feriotti, C., Bazan, S. B., & Calich, V. L. G. (2015). TLR-4 cooperates with Dectin-1 and mannose receptor to expand Th17 and Tc17 cells induced by Paracoccidioides brasiliensis stimulated dendritic cells. Frontiers in Micro-biology, 6. doi:10.3389/fmicb.2015.00261

Dragicevic, A., Dzopalic, T., Vasilijic, S., Vucevic, D., Tomic, S., Bozic, B., & Colic, M. (2012). Signaling through Toll-like receptor 3 and Dectin-1 potentiates the capabil-ity of human monocyte-derived dendritic cells to promote T-helper 1 and T-helper 17 immune responses. Cytotherapy, 14(5), 598–607. https://doi.org/10.3109/14653249.2012.667873

Ferwerda, G., Meyer-Wentrup, F., Kullberg, B. J., Netea, M. G., & Adema, G. J. (2008). Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cellular microbiology, 10(10), 2058–2066. https://doi.org/10.1111/j.1462-5822.2008.01188.x

Richter J, Svozil V, Král V, Rajnohová Dobiášová L, Vetvicka V. β-glucan affects mucosal immunity in children with chronic respiratory problems under physical stress: clinical trials. Ann Transl Med. 2015 Mar;3(4):52.

Van Bruggen, R., Drewniak, A., Jansen, M., van Houdt, M., Roos, D., Chapel, H., Verhoeven, A. J., & Kuijpers, T. W. (2009). Complement receptor 3, not Dectin-1, is the major receptor on human neutrophils for beta-glucan-bearing particles. Molecular immunology, 47(2-3), 575–581. https://doi.org/10.1016/j.molimm.2009.09.018

Yu Xia, Václav Větvička, Jun Yan, Margareta Hanikýřová, Tanya Mayadas, Gordon D. Ross; The β-Glucan-Binding Lectin Site of Mouse CR3 (CD11b/CD18) and Its Func-tion in Generating a Primed State of the Receptor That Mediates Cytotoxic Activation in Response to iC3b-Opsonized Target Cells1. J Immunol 15 February 1999; 162 (4): 2281–2290. https://doi.org/10.4049/jimmunol.162.4.2281

Alexander MP, Fiering SN, Ostroff GR, Cramer RA, Mullins DW. Be-ta-glucan-induced inflammatory monocytes mediate antitumor efficacy in the murine lung. Cancer Immunology, Immunotherapy. 2018 Nov 23;67(11):1731–42.

Thwe PM, Fritz DI, Snyder JP, Smith PR, Curtis KD, O’Donnell A, et al. Syk-dependent glycolytic reprogramming in dendritic cells regulates IL-1β production to β-glucan ligands in a TLR-independent manner. J Leukoc Biol. 2019 Nov 28;106(6).

Ren A, Li Z, Zhang X, Deng R, Ma Y. Inhibition of Dectin-1 on Dendritic Cells Pre-vents Maturation and Prolongs Murine Islet Allograft Survival. J Inflamm Res. 2021 Jan;Volume 14:63–73.

Bing Li, Yihua Cai, Chunjian Qi, Richard Hansen, Chuanlin Ding, Thomas C. Mitchell, Jun Yan; Orally Administered Particulate β-Glucan Modulates Tumor-Capturing Den-dritic Cells and Improves Antitumor T-Cell Responses in Cancer. Clin Cancer Res 1 November 2010; 16 (21): 5153–5164. https://doi.org/10.1158/1078-0432.CCR-10-0820

Zhong, W., Hansen, R., Li, B., Cai, Y., Salvador, C., Moore, G. D., & Yan, J. (2009). Effect of Yeast-derived β-glucan in Conjunction With Bevacizumab for the Treatment of Human Lung Adenocarcinoma in Subcutaneous and Orthotopic Xenograft Models. Journal of Immunotherapy, 32(7), 703–712. doi: 10.1097/cji.0b013e3181ad3fcf

Zheng, Z., Tang, W., Lu, W., Mu, X., Liu, Y., Pan, X., Wang, K., & Zhang, Y. (2022). Metabolism and Biodegradation of β-Glucan in vivo. Frontiers in veterinary science, 9, 889586. https://doi.org/10.3389/fvets.2022.889586

Steimbach L, Borgmann AV, Gomar GG, Hoffmann LV, Rutckeviski R, de Andrade DP, et al. Fungal beta-glucans as adjuvants for treating cancer patients - A systematic review of clinical trials. Clin Nutr. 2021 May;40(5):3104–13.

Subha Karumuthil-Melethil, Radhika Gudi, Benjamin M. Johnson, Nicolas Perez, Chenthamarakshan Vasu; Fungal β-Glucan, a Dectin-1 Ligand, Promotes Protection from Type 1 Diabetes by Inducing Regulatory Innate Immune Response. J Immunol 1 October 2014; 193 (7): 3308–3321. https://doi.org/10.4049/jimmunol.1400186

Richter J, Svozil V, Král V, Rajnohová Dobiášová L, Vetvicka V. β-glucan affects mucosal immunity in children with chronic respiratory problems under physical stress: clinical trials. Ann Transl Med. 2015 Mar;3(4):52.

Richter J, Svozil V, Král V, Rajnohová Dobiášová L, Stiborová I, Vetvicka V. Clinical trials of yeast-derived β-(1,3) glucan in children: effects on innate immunity. Ann Transl Med. 2014 Feb;2(2):15.

McFarlin BK, Bridgeman EA, Vingren JL, Hill DW. Dry blood spot samples to moni-tor immune-associated mRNA expression in intervention studies: Impact of Baker's yeast beta glucan. Methods. 2023 Nov; 219:39-47. doi: 10.1016/j.ymeth.2023.09.006. Epub 2023 Sep 22. PMID: 37741562.

Carpenter KC, Breslin WL, Davidson T, Adams A, McFarlin BK. Baker's yeast β-glucan supplementation increases monocytes and cytokines post-exercise: implica-tions for infection risk? Br J Nutr. 2013 Feb 14;109(3):478-86. doi: 10.1017/S0007114512001407. Epub 2012 May 10. PMID: 22575076.McFarlin

Venable AS, Carpenter KC, Henning AL, Ogenstad S. Oral Supplementation with Baker's Yeast Beta Glucan Is Associated with Altered Monocytes, T Cells and Cyto-kines following a Bout of Strenuous Exercise. Front Physiol. 2017 Oct 20; 8:786. doi: 10.3389/fphys.2017.00786. PMID: 29104540; PMCID: PMC5654840.

Pontes MV, Ribeiro TC, Ribeiro H, de Mattos AP, Almeida IR, Leal VM, Cabral GN, Stolz S, Zhuang W, Scalabrin DM. Cow's milk-based beverage consumption in 1- to 4-year-olds and allergic manifestations: an RCT. Nutr J. 2016 Feb 27;15:19. doi: 10.1186/s12937-016-0138-0. PMID: 26920136; PMCID: PMC4769487.

Jaumouillé, V., & Grinstein, S. (2016). Molecular Mechanisms of Phagosome For-mation. Microbiology Spectrum, 4(3)

Descargas

Publicado

2023-12-15

Número

Sección

ARTÍCULOS DE REVISIÓN

Cómo citar

Dectin 1a orquesta respuestas complejas en linajes inmunocompetentes: hacia β-Glucanos de origen fúngico. (2023). Biociencias, 18(2). https://doi.org/10.18041/2390-0512/biociencias.2.11541

Artículos más leídos del mismo autor/a