Water Clarification with Electrical Energy Generation by Al-H2O2 Galvanic Cell
DOI:
https://doi.org/10.18041/1794-4953/avances.1.5106Keywords:
Coagulation-flocculation, water treatment, electrochemistry, electric energy., water clarificationAbstract
Electrical energy generation by aluminum oxidation produces Al3+ cation and species like Al(OH)3, responsible for inducing flocculation in water treatment. This paper aims to highlight the fact that an Al-H2O2 galvanic cell can destabilize the suspended solids of a water used as cell’s electrolyte, in order to describe a clarification process with electrical energy generation instead of consumption. Thus, a galvanic cell was made by using an aluminum anode, a graphite cathode, H2O2 as oxidant and a clay suspension in KCl solution as electrolyte that simulated the water to treat; removal of turbidity of suspension, potential difference and the generated electrical current were evaluated. The proposed system removed turbidity from water by flocculation and dissolution, as well as generated an average of 0.613 V and supplied 8.51 C at an average intensity of 157 µA. Aluminum hydrolysis eliminated 88.9±1% of turbidity by flocculation, improving to 96.6±1% by addition of H2O2, that solubilized suspended particles, stimulated electrical current generation and mitigated the voltage fall. This way, it is presented a system of obtaining energy from a primary water treatment induced by sub-products of chemical-electrical direct energy transformation.Downloads
References
A. M. Hamiche y A. B. Stambouli, “A review of the water-energy nexus”, Renew. Sustain. Energy Rev., vol. 65, pp. 319-331, Nov. 2016, https://doi.org/10.1016/j.rser.2016.07.020.
World Health Organization, Guidelines for Drinking-Water Quality, 4th ed., Geneva, Switzerland: WHO, 2018.
D. Mara, J. Lane, B. Scott y D. Trouba, “Sanitation and health”, PLoS Med., vol. 7, n.º 11, e1000363, Nov. 2010, https://doi.org/10.1371/journal.pmed.1000363.
Organización Mundial de la Salud, Agua, saneamiento e higiene para acelerar y sostener el progreso respecto de las enfermedades tropicales desatendidas: una estrategia mundial 2015-2020, Geneva, Switzerland: WHO, 2015.
Organización Panamericana de la Salud, Agua y saneamiento: Evidencias para políticas públicas con enfoque en derechos humanos y resultados en salud pública, Washington D. C., USA: WHO, 2011.
Y. Gu, Y. Li, X. Li, P. Luo, H. Wang, Z. P. Robinson, X. Wang, J. Wu y F. Li, “The feasibility and challenges of energy self-sufficient wastewater treatment plants”, Appl. Energy, vol. 204, pp. 1463-1475, Oct. 2017, https://doi.org/10.1016/j.apenergy.2017.02.069.
V. G. Gude, “Energy and water autarky of wastewater treatment and power generation systems”, Renew. Sustain. Energy Rev., vol. 45, pp. 52-68, May. 2015, https://doi.org/10.1016/j.rser.2015.01.055.
X. Yang, Z. Fan, H. Zhang, W. Xu y Z. Wu, “Energy harvest from contaminants via coupled redox fuel cells”, Energy Procedia, vol. 205, pp. 1852-1857, May. 2017, https://doi.org/10.1016/j.egypro.2017.03.542.
N. Diaz-Elsayed, N. Rezaei, T. Guo, S. Mohebbi y Q. Zhang, “Wastewater-based resource recovery technologies across scale: A review”, Resour. Conserv. Recycl., vol. 145, pp. 94-112, Jun. 2019, https://doi.org/10.1016/j.resconrec.2018.12.035.
E. Butler, Y. Hung, R. Y. Yeh y M. S. Al Ahmad, “Electrocoagulation in wastewater treatment”, Water, vol. 3, n.º 1, pp. 495-525, Apr. 2011, https://doi.org/10.3390/w3020495.
E. I. Shkolnikov, A. Z. Zhuk y M. S. Vlaskin, “Aluminum as energy carrier: Feasibility analysis and current technologies overview”, Renew. Sustain. Energy Rev., vol. 15, n.º 9, pp. 4611-4623, Dec. 2011, https://doi.org/10.1016/j.rser.2011.07.091.
G. A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin, E. Knipping, W. Peters J. F. Drillet, S. Passerini y R. Hahn, “An overview and future perspectives of aluminum batteries”, Adv. Mater., vol. 28, n.º 35, pp. 1-16, Jun. 2016, https://doi.org/10.1002/adma.201601357.
Q. Li y N. J. Bjerrum, “Aluminum as anode for energy storage and conversion: a review”, J. Power Sources, vol. 110, n.º 1, pp. 1-10, Jul. 2002, https://doi.org/10.1016/S0378-7753(01)01014-X.
J. Bratby Coagulation and Flocculation with Water and Wastewater Treatment. 3rd ed., London, UK: IWA Publishing, 2016.
C. Y. Teh, P. M. Budiman, K. P. Y. Shak y T. Y. Wu “Recent advancement of coagulation− flocculation and its application in wastewater treatment”, Ind. Eng. Chem. Res., vol. 55, n.º 16, pp. 4363-4369, Mar. 2016, https://doi.org/10.1021/acs.iecr.5b04703.
M. C. Collivignarelli, R. Pedrazzani, S. Sorlini, A. Abbà y G. Bertanza, “H2O2 based oxidation processes for the treatment of real high strength aqueous wastes”, Sustainability, vol. 9, n.º 2, pp. 553-560, Feb. 2017, https://doi.org/10.3390/su9020244.
L. An, T. Zhao, X. Yan, X. Zhou y P. Tan, “The dual role of hydrogen peroxide in fuel cells”, Sci. Bull., vol. 60, n.º 1, pp. 55-64, Jan. 2015, https://doi.org/10.1007/s11434-014-0694-7.
N. B. Pulsone, D. P. Hart, A. M. Siegel, J. R. Edwards y K. E. Railey, “Aluminum-water energy system for autonomous undersea vehicles”. Lincoln Lab. J., vol. 22, n.º 2, pp. 79-90. [en línea]. Disponible: https://www.ll.mit.edu/sites/default/files/page/doc/2018-06/22_2_5_Pulsone.pdf
O. Hasvold, K. H. Johansen y K. Vestgaard, “The alkaline aluminium hydrogen peroxide semi-Fuel Cell for the Hugin 3000 autonomous underwater vehicle”, presented at the Proc. 2002 Workshop Autonomous Underw. Vehicles, San Antonio, TX, USA, Jun. 21, 2002. https://doi.org/10.1109/AUV.2002.1177209.
D. J. Brodrecht y J. J. Rusek “Aluminum–hydrogen peroxide fuel-cell studies”, Appl. Energy, vol. 74, n.º 1-2, pp. 113-124, Jan.-Feb. 2003, https://doi.org/10.1016/S0306-2619(02)00137-X.
L. C. Alfonso y B. A. Ordóñez, “Implementación de oxidantes (MIOX, NaClO, H2O2) para el mejoramiento de los procesos de coagulación y floculación de aguas residuales en la planta de tratamiento de aguas residuales El Salitre”, B. S. thesis, Proy. Curric. Lic. Quím., Univ. Dist. Francisco José de Caldas, Bogotá, Colombia, 2014.
S. A. Khaleefa-Ali “Dye removal from wastewater”, Int. J. Sci. Res. Sci. Eng. Technol, vol. 3, n.º 5, pp. 20-26, Jul.-Aug. 2017. [En línea]. Disponible: http://ijsrset.com/paper/2728.pdf
World Health Organization, Water Quality and Health-Review of Turbidity: Information for regulators, 2017. [En línea]. Disponible: https://apps.who.int/iris/bitstream/handle/10665/254631/WHO-FWC-WSH-17.01-eng.pdf
W. Zhang, X. Tang, Q. Xian, N. Weisbrod, J. E. Yang y H. Wang, “A field study of colloid transport in surface and subsurface flows”, J. Hydrol., vol. 542, pp. 101-114, Nov. 2016, https://doi.org/10.1016/j.jhydrol.2016.08.056.
L. E. Gualdrón, “Evaluación de la calidad de agua de ríos de Colombia usando parámetros fisicoquímicos y biológicos”, Din. Ambient., n.º 1, pp. 83-102, Dec. 2018, https://doi.org/10.18041/2590-6704/ambiental.1.2016.4593
R. F. Benson, A. M. Cárdenas y L. C. Langebrake, “Aluminum and solid alkali peroxide galvanic cell”, US Patent 7 855 015, Dec. 21, 2010 [En línea]. Disponible: https:// patents.google.com/patent/US7855015
D. Raptis, A. K. Seferlis, V. Mylona, C. Politis y P. Lianos, “Electrochemical hydrogen and electricity production by using anodes made of commercial aluminum”, Int. J. Hydrogen Energy, vol. 44, n.º 3, pp. 1359-1365, Jan. 2019, https://doi.org/10.1016/j.ijhydene.2018.11.202.
A. Silberman, V. Kalzuzhny, I. Cantero, M. Bengoechea y J. Blazquez, “Al/H2O2 battery”, Jun. 15, 2011 [En línea]. Disponible: https:// patents.google.com/patent/EP2333884A1/en
V. Shmelev, V. Nikolaev, J. H. Lee y C. Yim, “Hydrogen production by reaction of aluminum with water”, Int. J. Hydrogen Energy, vol. 41, n.º 38, pp. 16664-16673, Oct. 2016, https://doi.org/10.1016/j.ijhydene.2016.05.159.
M. T. Baile, “Estudio del comportamiento frente a la corrosión”, en Estudio de la conformación de componentes aluminio-silicio en estado semisólido., Doctoral thesis, Dept. Cienc. Mater., Univ. Politèc. Catalunya, Barcelona, España, 2005 [En línea]. Disponible: http://hdl.handle.net/2117/93359
J. Saukkoriipi, “The hydrolysis of aluminum in aqueous environments”, en Theoretical study of the hydrolysis of aluminum complexes, Oulu, Finlandia: Acta Univ. Oul., 2010. [En línea]. Disponible: http:// jultika.oulu.fi/files/isbn9789514261831.pdf
C. Exley, “The toxicity of aluminium in humans”, Morphologie, vol. 100, n.º 329, pp. 51-55, Jun. 2016, https://doi.org/10.1016/j.morpho.2015.12.003.
S. D. W. Comber, M. J. Gardner y J. Churchley, “Aluminium speciation: implications of wastewater effluent dosing on river water quality”, Chem. Speciat. Bioavailab., vol. 17, n.º 3, pp. 117-128, 2005, https://doi.org/10.3184/095422905782774874.
L. L. Zeng, Z. S. Hong, C. Wang y Z. Z. Yang, “Experimental study on physical properties of clays with organic matter soluble and insoluble in water”, Appl. Clay. Sci., vol. 132-133, pp. 660-667, Nov. 2016, https://doi.org/10.1016/j.clay.2016.08.018.
S. Rihs, A. Gontier, E. Lascar, A. Biehler, y M. P. Turpault, “Effect of organic matter removal on U-series signal in clay minerals”, Appl. Clay. Sci., vol. 147, pp. 128-136, Oct. 2017, https://doi.org/10.1016/j.clay.2017.07.016.
R. Mori, “Electrochemical properties of a rechargeable aluminum–air battery with a metal–organic framework as air cathode material”, RSC Adv., vol. 7, n.º 11, pp. 6389-6395, Jan. 2017, https://doi.org/10.1039/c6ra25164a.
R. Mckerracher, A. Holland, A. Cruden, y R. G. A. Wills, “Comparison of carbon materials as cathodes for the aluminium-ion battery”, Carbon, vol. 144, pp. 333-341, Apr. 2019, https://doi.org/10.1016/j.carbon.2018.12.021.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Avances: Investigación en Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.