Prompt Single-Effect Absorption Chiller’s Modelling Methodology within the TRNSYS Simulation Environment
DOI:
https://doi.org/10.18041/1794-4953/avances.1.4741Keywords:
1-effect absorption chiller, Air conditioning, COP, Energy simulation, TRNSYSAbstract
Economic growth increases the demand for air-conditioning and refrigeration. Hence, energy-efficient buildings and renewable-distributed energy resources (DER) are timely topics. Thermally-driven absorption chillers power cooling processes from heat sources such as district heat, combined heat and power (CHP), solar thermal energy, or industrial waste heat; with the CO2 footprint of these systems being relatively low. As absorption chillers’ dynamics are not straightforward, simulation tools are required to model them. The present work elaborates on a proposed straightforward methodology, aimed at completion of a data file from the manufacturer’s capacity curves so as to simulate a 1-effect absorption chiller in TRNSYS.
Downloads
References
Lundgren, K. & Kjellstrom, T. (2013). Sustainability challenges from climate change and air conditioning use in urban areas. Sustain., 5 (7), 3116–3128.
Dahl, R. (2013). Cooling Concepts: Alternatives to Air Conditioning for a Warm World. Environ. Health Perspect., 121 (1), a18–a25.
Ghafoor, A. & Fracastoro, G. V. (2015). Cost-effectiveness of multi-purpose solar thermal systems and compar-ison with PV-based heat pumps. Sol. Energy, 113272–280.
Ministerio de Minas y Energía and PME (2017). Caracterización energética sectores residencial, comercial y terciario, Bogotá D.C, Colombia.
IEA (2012). IEA Technology Roadmap: Solar Heating and Cooling. Paris, Francia.
REN21 (2016). Renewables 2016: Global Status Report. Paris, Francia.
OECD and International Energy Agency (2011). Deploying renewables: Best and future policy practice. OECD Publishing, Paris, Francia.
Balaras, C. A., et al. (2007). Solar air conditioning in Europe-an overview. Renew. Sustain. Energy Rev. 11 (2), pp. 299–314.
Allouhi, A., Kousksou, T., Jamil, A., Bruel, P., Mourad, Y. & Zeraouli, Y. (2015). Solar driven cooling systems: An updated review. Renew. Sustain. Energy Rev. 44, 159–181.
Cardona-Gil, J. A. & Isaza, C. A. (2015). Simulation of a Control for Air Conditioning System Operated by Solar Energy en ISES Solar World Congress (SWC 2015).
IEA (2017). Renewables for Heating and Cooling: Untapped Potential. Paris, Francia.
Otanicar, T. R., Taylor, A. & Phelan P. E. (2012). Prospects for solar cooling – An economic and environmental assessment. Sol. Energy, 86 (5) 1287–1299.
Hassan, H. Z. & Mohamad, A. A. (2012). A review on solar cold production through absorption technology. Renew. Sustain. Energy Rev.16 (7) 5331–5348.
SACE (Solar Air Conditioning in Europe) (2003). Final Report, EU Project NNE5-2001-00025.
Ghafoor, A. & Munir, A. (2015) Worldwide overview of solar thermal cooling technologies. Renew. Sustain. Energy Rev.43, 763–774.
Ullah, K. R., Saidur, R., Ping, H. W., Akikur, R. K. & Shuvo, N. H. (2013). A review of solar thermal refrigeration and cooling methods. Renew. Sustain. Energy Rev. 24, 499–513.
Aliane, A., Abboudi, S., Seladji, C. & Guendouz, B. (2016). An illustrated review on solar absorption cooling exper-imental studies. Renew. Sustain. Energy Rev. 65, 443–458.
Eicker, U. (2003).Solar Technologies for Buildings. John Wiley & Sons Ltd, Chichester, England.
Aphornratana, S. (1998).Theoretical and experimental investigation of a combined ejector-absorption refrigerator. Int. J. Energy Res. 22 (3) 195—207.
Zhai, X. Q., Qu, M., Li, Y. &. Wang, R. Z (2011). A review for research and new design options of solar absorption cooling systems. Renew. Sustain. Energy Rev. 15 (9) 4416–4423.
Gebreslassie, B. H., Medrano, M. & Boer, D. (2010). Exergy analysis of multi-effect water – LiBr absorption systems: From half to triple effect. Renew. Energy, 35 (89) 1773–1782.
Kim, D. S. & Infante Ferreira, C. A. (2008). Solar refrigeration options - a state-of-the-art review. Int. J. Refrig.31 (1) 3–15.
Kim, D. S. & Machielsen, C. H. M. (2002). Evaluation of air-cooled solar absorption cooling systems en International Sorption Heat Pump Conference.
SEL, TRANSSOLAR Energietechnik GmbH, CSTB, and TESS, (2012). “Volume 4 Mathematical Reference,” en : A Tran-sient System Simulation Program (TRNSYS 17), Madison, WI.
Eicker, U., Pietruschka, D., Haag, M. & Schmitt, A. (2015). Systematic design and analysis of solar thermal cooling systems in different climates. Renew. Energy, 80, 827–836.
HuiN Co. (2015). Jiangsu Huineng New Energy Technology Brochure. Jiangsu Huineng New Energy Technology, Jiangsu, China.
Lazzarin, R. M. 2007. Solar cooling plants: How to arrange solar collectors, absorption chillers and the load. Int. J. Low Carbon Technol. 2 (4), 376–390.
Reda, F., Viot, M., Sipilä, K. & M Helm (2016). “Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country. Appl. Energy, 166, 27–43.
