Análisis biomecánico comparativo entre coronas individuales y restauraciones ferulizadas implanto soportadas mediante el uso del método de los elementos finitos

Authors

  • José A. Guerrero Universidad Nacional
  • Diana C. Martínez Universidad Nacional
  • Luis M. Méndez M. Universidad Nacional

Keywords:

Finite element analysis-FEA, biomechanic, dental implants, fixed partial implant, oral rehabilitation

Abstract

A dental implant is a device that replaces a missingtooth root. Dental implants have been widely usedin oral rehabilitation treatment. The scientificmanagement of dental implants can be carried outin clinics or by some numerical method, such asfinite element method, to evaluate or predict itsperformance. In this paper a finite element analysispresents, which was validated by statistical analysisof medical records. The study was commissionedto compare the biomechanical behavior ofsplinted restorations to individual crowns in theposterior region of the mandible. For the study,it employed three different types of materials thatare used clinically. Greater efforts were observed inindividual crowns and a very similar strain for allthree types of material used. Also, it detected thesites of major stress in the lower jaw bone.

Downloads

Download data is not yet available.

References

1. T. Whicker, Glossary of implant terms,AAID nomenclature committee, Journal of oralimplantology, vol. 16 (1), pp. 57-63, 1990.

2. K.J. Anusevice, Phillips ciencia de los materialesdentales, Elsevier, Barcelona – España, 2004.

3. R. Simon, Single Implant-supported molar andpremolar crowns: A ten-year retrospective clinicalreport, Journal prosthetic dentistry, vol. 90, pp.517-21, 2003.

4. W. Becker, Replacement of maxillary andmandibular molar with single endoosseus implantrestorations: A retrospective study, Journalprosthetic dentistry, vol. 74, pp. 51-5, 1995.

5. H. Scheller, A 5-year multicenter study onimplant-supported single crown restorations,International journal of oral maxillofacial implants,vol. 13, pp. 212-218, 1998.

6. R. Mericske, Clinical evaluation and prostheticcomplications of single tooth replacements by nonsumergedimplants, Clinical oral implant research,vol. 12, pp. 309-318, 2001.

7. D. Guichet, Effect of splinting and interproximalcontact tightness on load transfer by implantsrestorations, Journal prosthetic dentistry, vol. 87,pp. 528-35, 2002.

8. B. Pjetursson, A systematic review of thesurvival and complication rates of fixed partialdentures(FPDs) after an observation period of atleast 5 years, Clinical oral implant research, vol. 15,pp. 625-642, 2004.h

9. G. Papavasiliou, Three-dimensional finite elementanalysis of stress-distribution around single toothimplants as a function of bony support prosthesistype, and loading during function, Journal prostheticdentistry, vol. 76, pp. 633-40, 1996.

10. H. Iplikcioglu, Comparative evaluation of theeffect of diameter, length and number of implantssupporting three-fixed partial prostheses on stressdistribution in the bone, Journal of dentistry, vol.30, pp. 41-46, 2002.

11. T. Wang, Effects of prosthesis materials andprosthesis splinting on peri-implant bone stressaround implants in poor-quality bone: a numericanalysis, International journal of oral maxillofacialimplants, vol. 17, pp. 231-237, 2002.

12. A. Geramy, Finite element analysis of threedesigns of an implant supported molar crow,Journal of dentistry, vol. 92, pp. 434-40, 2004.

13. E. Gurcan, The influence of occlusal loadinglocation on stresses transferred to implantsupportedprostheses and supporting bone: Athree-dimensional finite element study, Journal ofdentistry, vol. 91, pp. 144-50, 2004.

14. H. Lucie, Influence of implant length anddiameter on stress distribution: A finite elementanalysis, Journal of dentistry, vol. 91, pp. 20-5,2004.

15. Lutfi, Three-dimensional finite-element analysisof functional stresses in different bone locationsproduced by implants placed in the maxillaryposterior region of the sinus floor, Journal ofdentistry, vol. 93, pp. 38-44, 2005.

16. B. Simsek. Effects of different inter-implantdistances on the stress distribution aroundendosseous implants in posterior mandible: A3D finite element analysis, Medical engineering &physics, vol. 28, pp. 199-213, 2006.

17. T. Li y L. Kong, Selection of optimal dentalimplant diameter and length in type IV bone: a threedimensionalfinite element analysis. Internationaljournal of oral and maxillofacial surgery, vol. 38,pp. 1077-1083, 2009.

18. X. Ding, Implant-bone interface stressdistribution in immediately loaded implants ofdifferent diameters: A three-dimensional finiteelement analysis, Journal of prosthodontics, Vol.18, págs. 393-402, 2009.

19. A. Merdji, Stress analysis in dental prosthesis,Computational materials science, vol. 49, pp. 126-133, 2010.

20. A. Djebbar, Analysis of the effect of loaddirection on the stress distribution in dentalimplant, Materials and design, vol. 31, pp. 2097-2001, 2010.

21. C. L. Lin, Factorial analysis of variablesinfluencing mechanical characteristics of a singletooth implant placed in the maxilla using finiteelement analysis and the statistics-based Taguchimethod, European journal oral sciences, vol. 115,pp. 408-416, 2007.

22. M. Mc Craken, Dental implant materials:commercially pure titanium and titanium alloys,Journal of Prosthodontics, vol. 8, pp. 40-43,1999.

23. Perfil técnico Wiron 99 BEGO.

24. Vivadent, Dental alloys compositions andphysical properties, Ivoclar.

25. A. Nataly, Dental biomechanics, Taylor &Fracis, Italy, 2003.

26. O. T. Cacciacane, Rehabilitación implantoasistida.Bases y fundamentos, Ripano, Argentina,2008.

Downloads

Published

2011-12-01

How to Cite

Guerrero, J. A., C. Martínez, D., & Méndez M., L. M. (2011). Análisis biomecánico comparativo entre coronas individuales y restauraciones ferulizadas implanto soportadas mediante el uso del método de los elementos finitos. Avances: Investigación En Ingeniería, 8(2), 07-17. https://revistas.unilibre.edu.co/index.php/avances/article/view/2700