Modeling and LQR control of a Quadrotor

Authors

  • Mauricio Vladimir Peña Giraldo, Msc. Universidad Libre
  • Edilberto Carlos Vivas Gonzales, Msc. Universidad Pedagógica Nacional
  • Carol Ivonn Rodríguez Feliciano, Msc. Universidad Nacional

Keywords:

Dynamic model, linear system, non-linear system, quadrotor, LQR control

Abstract

This work shows the study of the dynamic modelfor a quad-rotor helicopter, which consists of acentral body formed by a box with the batteriesand on-board computers for control and avionicfunctions. The body is joined by four beams whichhave a motor with two rotating wings at the farextreme of each of them. This gives sustentation tothe vehicle and gives the possibility of controllingthe orientation and translation of the system.Although several theoretical papers can giveaccount of the quad-rotors dynamic model, manyof these attempts make several assumptions thatare only true for small indoor type vehicles. Forthis reason, the first stage of this work is to modelphysically the dynamics of the vehicle as a totallynon-linear system, where the complex dynamicsof the rotating wings are taken into account. Thisis followed by a linearization and a comparisonbetween the “real” and linear systems and thendesign a LQR control for it stabilization.

Downloads

Download data is not yet available.

References

1. Altug, E. and James, P. (2003). Quadrotorcontrol using dual camera visual feedback.IEEE: International conference on robotic andautomation, 4294 - 4299.

2. Bouabdallah, S.; Pierpaolo, M. and Roland,S. (2004). Design and control of a micro indoorQuadrotor. IEEE: International conference onrobotic and automation, 4393 - 4398.

3. Abdellah, M. and Benallegue, A. (2004). Dynamicfeedback controller of Euler angles and windparameters estimation for a Quadrotor unmannedaerial vehicle. IEEE: International conference onrobotic and automation, 2359 - 2366.

4. Bouabdallah, S.; Noth, A, M. and Roland, S.(2004). PID vs LQ control techniques applied to anindoor micro Quadrotor. IEEE\RSJ: Internationalconference on intelligent robots and systems, 2451- 2456.

5. Tayebi, A. and McGilvray, S. (2004). Attitudeestabilization of a four rotor aerial robot. 43rdIEEE: Conference on decision and control, 1216- 1221.

6. Moktari, A.; Benallegue, A. and Daachi, B.(2005). Robust feedback linearization and GHfor a Quadrotor unmanmned aerial vehicle. IEEE/RSJ: International conference on intelligent robotsand systems, 1009 - 1014.

7. Bouabdallah, S. and Roland, S. (2005).Backstepping and sliding mode techniques appliedto an indoor micro Quadrotor. IEEE: Internationalconference on robotic and automation, 2247 -2252.

8. Tayebi, A. and McGilvray, S. (2006). Attitudeestabilization of a VTOL Quadrotor aircraft.IEEE: Transactions on control systems technology,14, 562 - 571.

9. Besnard, L., Yuri, B. (2007). Control of aQuadrotor vehicle using slide mode disturbancesobserver. American control conference, 5230 - 5235.

10. Mehmet, O. (2007). Robust low altitude behaviorcontrol of a Quadrotor rotorcraft throught slidesmodes. Mediterranean conference on control andautomation. 23 - 35.

11. Boouabdallah, S. (2004). Design and control ofquadrotors with application to autonomous flying.Ecole Polytechnique Federale de Lausanne.

12. Spong, M. W.; Hutchinson, S. and Vidyasagar,M. (1999). Robot modeling and control. Wiley.

13. Bramwell, A. R. S. (1985). Bramwell’s helicopterdynamics. Butterworth-Heinemann Ltd.

14. Seddon, L. (1990). Basic aerodynamicshelicopters. BSP Professional Books.

Downloads

Published

2010-12-01

How to Cite

Peña Giraldo, M. V., Vivas Gonzales, E. C., & Rodríguez Feliciano, C. I. (2010). Modeling and LQR control of a Quadrotor. Avances: Investigación En Ingeniería, 1(13), 71-86. https://revistas.unilibre.edu.co/index.php/avances/article/view/2690