Canonical discriminant analysis with graphical hypothesis-error and structure of a multivariate design with two factors
DOI:
https://doi.org/10.18041/1794-4953/avances.2.227Keywords:
Canonical discriminant analysis, canonical discriminant graphic, graphics HE, graph canonical structure, canonical variablesAbstract
In this paper two are described graphics techniques for multivariate data in the context of canonical discriminant analysis applied to a multivariate design with two factors and graphic representations of results generated application. In particular, the methodology described and illustrated to provide a low dimensional view data obtained from a design with two factors based multivariate canonical discriminant analysis with graphic data in reduced for multiple responses such as graphical range Hypothesis-Error (HE), which provides a direct visual comparison of the covariance matrices for the hypothesis and error, and the graph of canonical discriminant structure, which shows an alternative view for all variables in two-dimensional space that maximizes the differences between the groups, which provide a compact visual summary of the salient features of the results as they show all observations, group means, and their relationships to varying responses. In one application, the scope and potential of the canonical discriminant analysis with these graphs as an alternative for complex data analysis demonstrated experimental designs.
Downloads
References
Afifi, A.A. and V. Clark. (1996). Computer-AidedMultivariate Analysis. 3ed. Chapman & Hall,London.
Amaro, R., J.L. Vicente Villardón, y M.P.Galindo Villardón. (2004). MANOVA-Biplotpara arreglos de tratamientos con dos factores basado enmodelos lineales generales multivariantes. Interciencia,29(1), 26-32.
Amaro, R. (2001). MANOVA-Biplot para diseñoscon varios factores basado en modelos lineales generalesmultivariantes. Tesis Doctoral. Universidad deSalamanca. España.
Cruz Castillo, J.G., S. Ganeshanandam, B.R.Mackay, G.S. Lawes, C.R.O. Lawoko and D.J.Woolley (1994). Aplications of canonical discriminatanalysis. Hortscience, 29, 1115-1119.
Cuadras, C.M. (1996). Métodos de Análisis Multivariante.EUNIBAR, Barcelona, España.
Cuadras, C.M. (2007). Nuevos Métodos de AnálisisMultivariante. CMC Editions, Barcelona, España.
Egesel, C.O., F. Kahnman and M.K. Güi (2011).Discrimination of maize inbreds for kernel qualitytraits and fatty acid composition by a multivariatetechnique. Acta Scientiarum Agronomy. Maringá,33(4), 613-620.
Fisher, R.A. (1936). The use of multiple measurementsin taxonomic problems. Annals of Eugenics, 7,179-188.
Friendly, M. (2006). Data Ellipses, HE Plotsand Reduced-Rank Displays for Multivariate LinearModels: SAS Software and Examples. Journal ofStatistical Software, 17(6), 1-43.
Friendly, M. (2007). HE Plots for MultivariateGeneral Linear Models. Journal of Computationaland Graphical Statistics, 16, 1-23.
Friendly, M., G. Monette and J. Fox (2013).‘Elliptical insights: Understanding statistical methodsthrough elliptical geometry’. Statistical Science 28(1),1–39.
Friendly, M. and .M. Sigal (2014). Recent Advancesin Visualizing Multivariate Linear Models. RevistaColombiana de Estadística, 37(2), pp. 261-283.
Gittins, R. (1985). Canonical Analysis: A Reviewwith Applications in Ecology, Berlin: Springer-Verlag.
Gower, J.C. (1989). Generalized canonical analysis.In: Multiway Data Analysis. (R. Coppi y Bolasco,eds.). Elsevier Science Publisher, New York,pp. 221-232.
Henze, N. and Zirkler, B. (1990). A Class ofInvariant Consistent tests for Multivariate Normality.Communications in Statistics, Part A - Theoryand Methods, 19(10), 3595-3617.
Krzanowski, W.J. (1988). Principles of MultivariateAnalysis: A User’s Perspective. Oxford: ClarendonPress.
Lebart, L., A. Morineau y M. Piron. (1995).Statistique exploratoire multidimensionnelle. Dunod,París.
Mardia, K. (1974). Applications of some measuresof multivariate skewness and kurtosisin testing normality and robustness studies.Sankhya B, 36, 115-128.
Onofri A. e E. Ciriciofolo. (2004). Characterisationof yield quality in durum wheat by canonicalvariate anaysis. Proceedings VIII ESA CongressËuropean Agriculture in a global context”,Copenhagen, 11-15 July 2004, 541-542.
Statistical Analysis System (SAS) Institute(1999). SAS/STAT User’s Guide, Version 8,Cary, NC. USA.
Seber, G.A.F. (1984). Multivariate Observations.John Wiley & Sons, Inc. New York.
Shapiro, S.S. and M.B. Wilk. (1965). An Analysisof Variance Test for Normality (complete samples).Biometrika, 52.
