A Comparative Thermodynamic and Kinetic Analysis of Methane Tri-Reforming for Syngas Production: A Process Simulation Approach

Authors

DOI:

https://doi.org/10.18041/1794-4953/avances.1.13283

Keywords:

DWSIM, chemical equilibrium, catalytic reactor, computational simulation, methane tri-reforming, process simulation, reaction kinetics, syngas, thermodynamic analysis

Abstract

The growing concentration of greenhouse gases, primarily methane (CH₄) and carbon dioxide (CO₂), underscores the need for advanced carbon capture and utilization (CCU) technologies. Methane tri-reforming (TRM) has emerged as a highly promising pathway for the valorizitation of these gases, converting them into syngas (a mixture of H₂/CO), which serves a critical feedstock for the chemical industry. This study develops and applies a comprehensive process simulation framework to systematically evaluate the TRM process, addressing a notable gap in the literature regarding the rigorous comparison between thermodynamic limits and actual kinetic performance under different feed compositions. Using the DWSIM process simulator (version 8.1.2), a comparative analysis was conducted employing two distinct reactor models: a Gibbs reactor model to determine thermodynamic equilibrium limits and a kinetic Plug Flow Reactor (PFR) model to assess performance under practical conditions. The investigation evaluated three different feed compositions, varying the molar ratios, with the objective of identifying optimality criteria based on: (1) maximum combined conversion of CH₄ and CO₂, (2) suppression of coke formation, (3) efficient production of adjustable syngas, and (4) favorable energy balance. The thermodynamic analysis identified an optimal operating window between 800 K and 900 K at atmospheric pressure, where reactant conversions are maximized and secondary coke-forming reactions are suppressed. The kinetic analysis revealed that an ideal feed composition (molar fractions of: CH₄= 0,545, CO₂ =0,182, H₂O =0,091) achieves a methane conversion of 33,0% and produces syngas with an H₂/CO molar ratio of 3,0 at 800 K, representing the best compromise between conversion and selectivity. Finally, thermal and composition profiles along the reactor were evaluated, demonstrating syngas formation and the accelerated methane consumption during the tri-reforming process. This work provides a robust computational methodology for optimizing TRM feed conditions and producing syngas with tunable compositions, offering valuable insights for the conceptual design and scale-up of reactors for sustainable chemical production.

Downloads

Download data is not yet available.

References

[1] J. Szczygieł, K. Postawa, K. Chojnacka, D. Skrzypczak, G. Izydorczyk, and M. Kułażyński, “Thermodynamical analysis and optimization of dry reforming and trireforming of greenhouse gases: A statistical approach,” ACS Omega, vol. 9, no. 20, pp. 21242–21258, May 2024, doi: 10.1021/acsomega.5c03980. [Online]. Available: https://pubs.acs.org/doi/10.1021/acsomega.5c03980

[2] A. G. S. Hussien and K. Polychronopoulou, “A review on the different aspects and challenges of the dry reforming of methane (DRM) reaction,” Nanomaterials, vol. 12, no. 19, p. 3400, Sep. 2022, doi: 10.3390/nano12193400. [Online]. Available: https://www.mdpi.com/2079-4991/12/19/3400

[3] A. Pandey, C. Veeramani, A. K. Dalai, and P. Biswas, “Kinetic modelling of tri-reforming of methane for the production of synthesis gas over 5 wt.% Ni/ZrO2 catalyst,” Catal. Today, vol. 461, p. 115504, 2026, doi: https://doi.org/10.1016/j.cattod.2025.115504.

[4] R. Chein and W.-H. Hsu, “Thermodynamic analysis of syngas production via tri-reforming of methane and carbon gasification using flue gas from coal-fired power plants,” J. Clean. Prod., vol. 200, pp. 242–258, Nov. 2018, doi: 10.1016/j.jclepro.2018.07.228. [Online]. Available: https://www.mdpi.com/1996-1073/15/19/7159

[5] C. Song, “Tri-reforming: A new process for reducing CO₂ emissions,” Chem. Eng. News, vol. 81, no. 1, pp. 40–43, Jan. 2003. [Online]. Available: http://pubsapp.acs.org/subscribe/archive/ci/31/i01/html/01song.html

[6] X.-H. Pham et al., “Review on the catalytic tri-reforming of methane - Part II: Catalyst development,” Appl. Catal. A Gen., vol. 623, p. 118286, 2021, doi: https://doi.org/10.1016/j.apcata.2021.118286.

[7] M. A. N. Anwar et al., “CO₂ utilization: Turning greenhouse gas into fuels and valuable products,” J. Environ. Manage., vol. 260, p. 110059, Apr. 2020, doi: 10.1016/j.jenvman.2019.110059. [Online]. Available: https://www.mdpi.com/2079-4991/12/19/3400

[8] R. Carapellucci and L. Giordano, “Steam, dry and autothermal methane reforming for hydrogen production: A thermodynamic equilibrium analysis,” J. Power Sources, vol. 469, p. 228391, 2020, doi: https://doi.org/10.1016/j.jpowsour.2020.228391.

[9] A. J. Majewski and J. Wood, “Tri-reforming of methane over Ni@SiO2 catalyst,” Int. J. Hydrogen Energy, vol. 39, no. 24, pp. 12578–12585, 2014, doi: https://doi.org/10.1016/j.ijhydene.2014.06.071.

[10] A. O. Oni, K. Anaya, T. Giwa, G. Di Lullo, and A. Kumar, “Performance assessment of tri-reforming of methane,” in Proc. ASME Int. Mech. Eng. Congr. Expo., vol. 6, Houston, TX, USA, Nov. 2022, Paper no. IMECE2022-86687, doi: 10.1115/IMECE2022-86687. [Online]. Available: https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2022/86687/V006T08A025/1157208

[11] J. Szczygieł et al., “Thermodynamical analysis and optimization of dry reforming and trireforming of greenhouse gases: A statistical approach,” ACS Omega, PMC12332636, 2024. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC12332636/

[12] J. Díez-Ramírez, F. Dorado, A. Martínez-Valiente, J. M. García-Vargas, and P. Sánchez, “Kinetic, energetic and exergetic approach to the methane tri-reforming process,” Int. J. Hydrogen Energy, vol. 41, no. 42, pp. 19339–19348, 2016, doi: https://doi.org/10.1016/j.ijhydene.2016.04.229

[13] Y. Zhang, J. Cruz, S. Zhang, H. H. Lou, and T. J. Benson, “Process simulation and optimization of methanol production coupled to tri-reforming process,” Int. J. Hydrogen Energy, vol. 38, no. 31, pp. 13617–13630, 2013, doi: https://doi.org/10.1016/j.ijhydene.2013.08.009

[14] Y. M. Alanazi et al., “Tuning metal–support interactions on Ni/Al₂O₃ catalysts to improve catalytic activity and stability for dry reforming of methane,” Processes, vol. 9, no. 4, p. 706, Apr. 2021, doi: 10.3390/pr9040706. [Online]. Available: https://www.mdpi.com/2227-9717/9/4/706

[15] B. Abdullah, N. A. Abd Ghani, and D.-V. N. Vo, “Recent advances in dry reforming of methane over Ni-based catalysts,” J. Clean. Prod., vol. 162, pp. 170–185, 2017, doi: https://doi.org/10.1016/j.jclepro.2017.05.176.

[16] A. J. Majewski and J. Wood, “Tri-reforming of methane over Ni@SiO2 catalyst,” Int. J. Hydrogen Energy, vol. 39, no. 24, pp. 12578–12585, 2014, doi: https://doi.org/10.1016/j.ijhydene.2014.06.071

[17] Z. Arab Aboosadi, A. H. Jahanmiri, and M. R. Rahimpour, “Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method,” Appl. Energy, vol. 88, no. 8, pp. 2691–2701, 2011, doi: https://doi.org/10.1016/j.apenergy.2011.02.017

[18] N. A. K. Aramouni, J. G. Touma, B. A. Tarboush, J. Zeaiter, and M. N. Ahmad, “Catalyst design for dry reforming of methane: Analysis review,” Renew. Sustain. Energy Rev., vol. 82, pp. 2570–2585, 2018, doi: https://doi.org/10.1016/j.rser.2017.09.076

[19] R.-Y. Chein and W.-H. Hsu, “Thermodynamic analysis of syngas production via tri-reforming of methane and carbon gasification using flue gas from coal-fired power plants,” J. Clean. Prod., vol. 200, pp. 242–258, 2018, doi: https://doi.org/10.1016/j.jclepro.2018.07.228.

[20] A. Pandey, C. Veeramani, A. K. Dalai, and P. Biswas, “Kinetic modelling of tri-reforming of methane for the production of synthesis gas over 5 wt.% Ni/ZrO2 catalyst,” Catal. Today, vol. 461, p. 115504, 2026, doi: https://doi.org/10.1016/j.cattod.2025.115504.

[21] M. Escribà-Gelonch, J. Osorio-Tejada, L. Yu, B. Wanten, A. Bogaerts, and V. Hessel, “Techno-economic and life-cycle assessment for syngas production using sustainable plasma-assisted methane reforming technologies,” Energy Environ. Sci., vol. 18, no. 12, pp. 6043–6062, 2025, doi: https://do i.org/10.1039/D4EE05129G

[22] IEA (2024), Renewables 2023, IEA, Paris https://www.iea.org/reports/renewables-2023, Licence: CC BY 4.0

Published

2025-11-27

How to Cite

Gonzalez Caranton, A. R. ., Rodríguez Bonilla, M. F. ., & Pérez Motta, D. M. . (2025). A Comparative Thermodynamic and Kinetic Analysis of Methane Tri-Reforming for Syngas Production: A Process Simulation Approach. Avances: Investigación En Ingeniería, 22(1 (Enero-junio). https://doi.org/10.18041/1794-4953/avances.1.13283