Obtaining optimal parameters in the classification of LIDAR points clouds, from airborne sensors
DOI:
https://doi.org/10.18041/1794-4953/avances.1.1280Keywords:
ALS - Airbone laser Scanning, Data validation, Dot cloud classification, Digital field models, DTM Interpolation methods, Point cloud LiDARAbstract
In the present work the information obtained from the data of two airborne topographic sensors LiDAR, Riegl VQ 580 and Leica ALS70 is used, obtaining cloud of points of the same zone. By performing a comparative iterative analysis, obtaining the optimal parameters of iteration angle, terrain, slope and iteration distance, used in the semiautomatic classification of points clouds and generate digital terrain models - DTM. In order to analyze the behavior of the point clouds and precision check, a control of dimensions was carried out and comparisons of the different digital terrain models were obtained, obtaining, therefore, this methodology.
Downloads
References
Jancso, T., & Melykuti, G. (2011). Comparisonof Digital Terrain ModelsGained by Different Tchnologies.Spatial Data Mining and GeographicalKnowledge Services(ICSDM), 6.
A. Ruiz, W. K. (2012). Experiencias y aplicacionesdel lidar. Cataluña: Parc deMontjuïc, s/n.
Gruen, A. (2012). Development and Statusof Image Matching in Photogrammetry.The Photogrammetric Record, 22.
Barragán, W. (2013). Historical documentationin San Agustin (Huila), Colombia,world historical heritage using closerange photogrammetry techniques.Taking the Benefits of GeographicInformation Technologies 93, AppliedGeoinformatics for Society and Environment(AGSE Conferences) Stuttgart.
IDEAM, IGAC y CORMAGDALENA. (2008).Mapa de Cobertura de la Tierra CuencaMagdalena-Cauca: MetodologíaCORINE Land Cover adaptada paraColombia a escala 1:100.000. Institutode Hidrología, Meteorología y EstudiosAmbientales. Bogotá, D.C.: InstitutoGeográfico Agustín Codazzi y CorporaciónAutónoma Regional del ríoGrande de La Magdalena.
Barragán, W. (2016) Automatic generation ofbuilding mapping using digital, verticaland aerial high resolution photographsand lidar point clouds. The InternationalArchives of the Photogrammetry, RemoteSensing and Spatial InformationSciences, Volume XLI-B7, doi:10.5194/isprsarchives-XLI-B7-171. Prague, CzechRepublic
Duque Martinez, J. S. (2015). ComparaciónEstadística de Métodos InterpolaciónDeterminísticos y Estocásticos parala generación de Modelos Digitalesdel Terreno a partir de datos LIDAR,en la parroquia de Tumbabiro, cantónSan Miguel de Urcuquí, provincia deImbabura. Quito.
Gallo, I., Binaghi, E., & Raspanti, M. (2008).Neural disparity computation for densetwo-frame stereo correspondence.Pattern Recognition Letters, 15.
Li, B., Schnabel, R., Klein, R., Cheng, Z.,Dang, G., Jin, S., 2010. Robust normalestimation for point clouds with sharpfeatures. Computers & Graphics 34(2), 94–106.
Binaghi, E., Gallo, I., Marino, G., & Raspanti,M. (2004). Neural adaptive stereo matching.Pattern Recognition Letters, 16.
Chong, M. M., GAY, R. K., NGEE TAN, H., &LIU, J. (2000). GEOMETRIC KNOWLEDGE-BASEDSYSTEMS FRAMEWORKFOR STEREO IMAGE MATCHING. InN. T. University. Singapore: AcademicPress.
Hsieh, Y. C., Perlant, F., & McKeown, D. M.(1990). Recovering 3D Informationfrom Complex Aerial Imagery. IEEE, 11.[13] Gruen, A. W. (1985). adaptive least squarescorrelation: a powerful image matchingtechnique. s Afr J of Photogrammetry,Remote Sensing and Cartography, 13.
Lee, H.-Y., Kim, T., Park, W., & Lee, H. K.(2003). Extraction of digital elevationmodels from satellite stereo imagesthrough stereo matching based onepipolarity and scene geometry. Imageand Vision Computing, 8.
Durgham, M., Habit, A., Kersting, A., &Quackenbush, P. (2008). Error budgetof lidar systems and quality control ofthe derived point cloud. Calgary.
Hannah, M. (1988). Digital Stereo ImageMatching Techniques. InternationalArchives of Photogrammetry and RemoteSensing, 14.
Räsänen, A., Kuitunen, M., Tomppo, E., &Lensu, A. (2014). Coupling high-resolutionsatellite imagery with ALS-basedcanopy height model and digital elevationmodel in object-based borealforest habitat type classification. ISPRS Journal of Photogrammetry and RemoteSensing (94), 169-182.
Nurminen, K., Karjalainen, M., Yu, X.,Hyyppä, J., & Honkavaara, E. (2013).Performance of dense digital surfacemodels based on image matchingin the estimation of plot-level forestvariables. Journal of Photogrammetryand Remote Sensing, 12.
Survey, O. (2015). TerraSan User's guide.Intergraph corporation.
Cai, X., Zhou, D., Li, G., & Zhuang, Z.(2005). A Stereo Matching AlgorithmBased on Color Segments. 6.
Arranz Justel, J. J. (2013). Diseño,optimización y análisis de sistemasbasados en técnicas láser, para elmodelado geométrico, registroy documentación, aplicados aentidades de interés patrimonial.Madrid.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.