Hydrogen production using mixed oxides: TiO2-M (CoO and WO3)
PDF

Cómo citar

Pérez-Larios, A., & Gómez, R. (2013). Hydrogen production using mixed oxides: TiO2-M (CoO and WO3). Avances Investigación En Ingeniería, 10(2), 27–34. Recuperado a partir de https://revistas.unilibre.edu.co/index.php/avances/article/view/2746

Resumen

In this work we obtained materials of titanium dioxidewhit mixed oxide CoO-TiO2 and WO3-TiO2(1.0, 3.0, 5.0 %wt). The solids were characterizedby; nitrogen physisorption (BET) and porosity(BJH), XRD patterns and UV-Vis spectroscopy.The photoactivity was evaluated using a Pyrexreactor of 200 ml using a solution ethanol-water(1:1 molar ratio) and 0.1 g of catalyst using a highpressure Hg lamp (with a wavelength of 254 nmand an intensity of 2.2 mW/cm2 encapsulated ina quartz tube. The results showed materials withspecific surface area among 89 to 95 m2/g and 41to 91 m2/g with mesopority characteristics. TheXRD patterns show the formation of the crystallineanatase phase. The band gap energy (Eg) for thematerials were obtained with UV-Vis spectroscopy,the Eg values were lower than 3.2 eV for both mixedoxide. In the water splitting evaluation a maximin the efficient was found at Co and W at 5 wt.%.The hydrogen produced was 1000 μmol/h and 950μmol/h respectively, this is a value comparable torespect other works.

PDF

Citas

1. N. Arai, N. Saito, H. Nishiyama, K. Domen, H.Kobayashi, K. Sato, Y. Inoue. Catal.Today., 129,407, (2007).

2. S. Shen, L. Zhao, L. Guo. Int. J. HydrogenEnergy 35, 10148, (2010).

3. X. Zhang, D. Jing, L. Guo. Int. J. HydrogenEnergy 35, 7051 (2010).

4. Jiři Zitaa, Josef Krýsa, Urh Cěrnigoj, UrškaLavrenčič-Štangar, Jaromir Jirkovsky´c, JiřiRathouský. Catalysis Today 161, 29-34 (2011).

5. María L. Satuf, María J. Pierrestegui, LorenaRossini, Rodolfo J. Brandi, Orlando M. Alfano.Catalysis Today 161, 121-126 (2011).

6. Yao-Hsuan Tseng, Chien-HungKuo. Catal. Today(2011), doi:10.1016/ j.cattod.2011.02.011.

7. M. Uzunova-Bujnova, R. Kralchevska, M. Milanova,R. Todorovska, D. Hristova, D. Todorovsky.Catalysis Today 151, 14-20 (2010).

8. Sylwia Mozia. Catalysis Today 156, 198-207(2010).

9. C.A. Castro-López, A. Centeno, S.A. Giraldo.Catalysis Today 157, 119-124 (2010).

10. V. Rodríguez-González, M.A. Ruiz-Gómez,L.M. Torres-Martínez, R. Zanella, R. Gómez.Catalysis Today 148, 109-114 (2009).

11. Adrián M.T. Silva, Cláudia G. Silva, Goran Drazic,Joaquim L. Faria. Catalysis Today 144, 13-18 (2009).

12. A. Kubacka, G. Colón, M. Fernández-García.Catalysis Today 143, 286-292 (2009).

13. C. Guzmán, G. del Ángel, R. Gómez, F. Galindo-Hernández, C. Ángeles-Chavez.

14. Rosendo López, Ricardo Gómez, María ElenaLlanos. Catalysis Today 148, 103-108 (2009).

15. Claudia L. Bianchi, Giuseppe Cappelletti, SilviaArdizzone, Stefano Gialanella, Alberto Naldoni,Cesare Oliva, Carlo Pirola. Catalysis Today144, 31-36 (2009).

16. A. Bernabeu, R.F. Vercher, L. Santos-Juanes, P.J.Simón, C. Lardín, M.A. Martínez, J.A. Vicente,R. González, C. Llosá, A. Arques, A.M. Amat.Solar photocatalysis as a tertiary treatment toremove emerging pollutants from wastewatertreatment plant effluents. Catalysis Today 161(2011) 235–240.

17. Pow-Seng Yapa, Teik-Thye Lima, MadhaviSrinivasan. Nitrogen-doped TiO2/AC bifunctionalcomposite prepared by two-stagecalcination for enhanced synergistic removal ofhydrophobic pollutant using solar irradiation.Catalysis Today 161 (2011) 46–52.

18. Tseng IH, Jeffrey CSW. Chemical states ofmetal-loaded titania in the photoreduction ofCO2. Catal. Today, 97 (2004) 113–9.

19. Sreethawong S, Suzuki Y, Yoshikawa S. Photocatalyticevolution of hydrogen over mesoporousTiO2 supported NiO photocatalystprepared by single step sol–gel process withsurfactant template. Int J Hydrogen Energy 30(2005) 1053–62.

20. András Erdóelyi, János Raskó, Tamara Kecskés,Mariann Tóth, Márta Dömök, KornéliaBaán. Hydrogen formation in ethanol reformingon supported noble metal catalysts. CatalysisToday 116 (2006) 367–376.

21. L.S. Yoong a, F.K. Chong a, Binay K. Dutta.Development of copper-doped TiO2 photocatalystfor hydrogen production under visiblelight. Energy 34 (2009) 1652–1661.

22. Deborah V. César, Rachel F. Robertson, NeumanS. Resende. Characterization of ZnO andTiO2 catalysts to hydrogen production usingthermoprogrammed desorption of methanol.Catalysis Today 133–135 (2008) 136–141.

23. Thammanoon Sreethawong, Yoshikazu Suzuki,Susumu Yoshikawa, Photocatalytic evolutionof hydrogen over mesoporous TiO2 supportedNiO photocatalyst prepared by single-step sol–gel process with surfactant template. InternationalJournal of Hydrogen Energy 30 (2005)1053 – 1062.

24. Félix Galindo-Hernández, Ricardo Gómez.Degradation of the herbicide 2,4-dichlorophenoxyaceticacid over TiO2–CeO2 sol–gelphotocatalysts: Effect of the annealing temperatureon the photoactivity. Journal of Photochemistryand Photobiology A: Chemistry 217(2011) 383–388.

25. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara,S. Sugihara, K. Takeuch, Role of oxygen vacancyin the plasma-treated TiO2 photocatalystwith visible light activity for NO removal, J.Mol. Catal. A: Chem. 161 (2000) 205–212.

26. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto,S. Sugihara, Visible-light-active titanium oxidephotocatalyst realized by an oxygen-deficientstructure and by nitrogen doping, Appl. Catal.B: Environ. 42 (2003) 403–409.

27. Shama Rehman, Ruh Ullah, A.M. Butt, N.D.Gohar. Strategies of making TiO2 and ZnOvisible light active. Journal of Hazardous Materials,170 (2009) 560–569.

28. R.M. Navarro, F. del Valle, J.A. Villoria de laMano, M.C. Álvarez-Galván, J.L.G. Fierro. Photocatalyticwáter splitting under visible light:Concept and catalysts development. Advancesin Chemical Engineering, 36 (2009) 111-141.

29. Bandara J, Udawatta CPK, Rajapakse CSK.Highly stable CuO incorporated TiO2 catalystfor photocatalytic hydrogen production fromH2O. Photochem Photobiol Sci, 4 (2005)857–61.

30. H. Ogawa, A. Abe, J. Electrochem. Soc. 128(1981) 685.

31. K.V. Baiju, P. Shajesh, W. Wunderlich, P.Mukundan, S.R. Kumar, K.G.K. Warrier, J.Mol. Catal. A 276 (2007) 41.

32. K.M.K. Srivatsa, M. Bera, A. Basu, Thin SolidFilms 516 (2008) 7443.

33. V. Chakrapani, J. Thangala, M. Sunkara. WO3and W2N nanowire arrays for photoelectrochemicalhydrogen production. Int. J. of HydrogenEnergy 34 (2009) 9050-9059.

34. J.C.S. Wu, C.H. Chen, J. Photochem. Photobiol.A 163 (2004) 509.

35. L. Chen, J. Li, M. Ge, R.Zhu. Catalytis today153 (2010)

36. W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, Q.Chen, J. Phys. D: Appl. Phys. 33 (2000) 912.

37. K. Ishikawa, K. Yoshikawa, N. Okada, Phys.Rev. B, 37 (1988) 5852.

38. T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectroscopy,7 (1978) 321

39. W. Hung, S. Fu, J. Tseng, H. Chu, T. Ko, Chemosphere66 (2007) 2142

40. N. Venkatachalam, M. Palanichamy, V. Murugesan,J. Mol. Catal. A 273 (2007) 177.

41. M. A. Khan, O.B. Yang. Photocatalytic watersplitting fro hydrogen production under visiblelight on Ir and Co ionized titania nanotube. CatalysisToday 146 (2009) 177-182.

42. J. Yan, H. Yang, Y. Tang, Z. Lu, S. Zheng, M.Yao, Y. Han. Synthesis and photocatalytic activityof CoYyFe2-yO4-CuCO2O4 nanocompositesfor H2 production under visible lightirradiation. Renewable Energy 34 (2009) 2399-2403.

43. Tao Chen, Zhaochi Feng, Guopeng Wu, JianyingShi, Guijun Ma, Pinliang Ying, and Can Li.J. Phys. Chem. C, 2007, 111, 8005-8014.

Descargas

Los datos de descargas todavía no están disponibles.