Análisis discriminante canónico con técnicas gráficas multivariadas aplicado a un diseño con dos factores

Autores/as

  • Javier Lorbes Medina Instituto universitario de Tecnología de Yaracuy
  • Yelitza Garcia Orellana Universidad Centroccidental “Lisandro Alvarado”
  • Manuel Milla Pino Universidad Centroccidental Lisandro Alvarado
  • Lisbeth Diaz Universidad Centroccidental “Lisandro Alvarado”

DOI:

https://doi.org/10.18041/1794-4953/avances.2.227

Palabras clave:

Análisis discriminante canónico, gráfica HE canó- nica, variables canónicas

Resumen

Se describen dos técnicas gráficas multivariantes en el que se aplica e ilustra la metodología para proveer una vista en baja dimensión de resultados obtenidos de un diseño con dos factores multivariado basado en el análisis discriminante canónico con las gráficas Hipótesis-Error (HE), que provee una comparación visual directa de las matrices de covarianza para la hipótesis y error; y de estructura discriminante canónica, que muestra una vista alternativa para todas las variables en un espacio bidimensional que maximiza las diferencias entre los tratamientos y proveen un resumen visual compacto de las características resaltantes de los resultados, mostrando todas las observaciones, medias de tratamientos y sus relaciones con las respuestas. En una aplicación, se demuestra el alcance y potencial que ofrece el análisis discriminante canónico con estas gráficas como alternativa para el análisis de datos e interpretación de resultados provenientes de diseños experimentales complejos.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Afifi, A.A. and V. Clark. (1996). Computer-AidedMultivariate Analysis. 3ed. Chapman & Hall,London.

Amaro, R., J.L. Vicente Villardón, y M.P.Galindo Villardón. (2004). MANOVA-Biplotpara arreglos de tratamientos con dos factores basado enmodelos lineales generales multivariantes. Interciencia,29(1), 26-32.

Amaro, R. (2001). MANOVA-Biplot para diseñoscon varios factores basado en modelos lineales generalesmultivariantes. Tesis Doctoral. Universidad deSalamanca. España.

Cruz Castillo, J.G., S. Ganeshanandam, B.R.Mackay, G.S. Lawes, C.R.O. Lawoko and D.J.Woolley (1994). Aplications of canonical discriminatanalysis. Hortscience, 29, 1115-1119.

Cuadras, C.M. (1996). Métodos de Análisis Multivariante.EUNIBAR, Barcelona, España.

Cuadras, C.M. (2007). Nuevos Métodos de AnálisisMultivariante. CMC Editions, Barcelona, España.

Egesel, C.O., F. Kahnman and M.K. Güi (2011).Discrimination of maize inbreds for kernel qualitytraits and fatty acid composition by a multivariatetechnique. Acta Scientiarum Agronomy. Maringá,33(4), 613-620.

Fisher, R.A. (1936). The use of multiple measurementsin taxonomic problems. Annals of Eugenics, 7,179-188.

Friendly, M. (2006). Data Ellipses, HE Plotsand Reduced-Rank Displays for Multivariate LinearModels: SAS Software and Examples. Journal ofStatistical Software, 17(6), 1-43.

Friendly, M. (2007). HE Plots for MultivariateGeneral Linear Models. Journal of Computationaland Graphical Statistics, 16, 1-23.

Friendly, M., G. Monette and J. Fox (2013).‘Elliptical insights: Understanding statistical methodsthrough elliptical geometry’. Statistical Science 28(1),1–39.

Friendly, M. and .M. Sigal (2014). Recent Advancesin Visualizing Multivariate Linear Models. RevistaColombiana de Estadística, 37(2), pp. 261-283.

Gittins, R. (1985). Canonical Analysis: A Reviewwith Applications in Ecology, Berlin: Springer-Verlag.

Gower, J.C. (1989). Generalized canonical analysis.In: Multiway Data Analysis. (R. Coppi y Bolasco,eds.). Elsevier Science Publisher, New York,pp. 221-232.

Henze, N. and Zirkler, B. (1990). A Class ofInvariant Consistent tests for Multivariate Normality.Communications in Statistics, Part A - Theoryand Methods, 19(10), 3595-3617.

Krzanowski, W.J. (1988). Principles of MultivariateAnalysis: A User’s Perspective. Oxford: ClarendonPress.

Lebart, L., A. Morineau y M. Piron. (1995).Statistique exploratoire multidimensionnelle. Dunod,París.

Mardia, K. (1974). Applications of some measuresof multivariate skewness and kurtosisin testing normality and robustness studies.Sankhya B, 36, 115-128.

Onofri A. e E. Ciriciofolo. (2004). Characterisationof yield quality in durum wheat by canonicalvariate anaysis. Proceedings VIII ESA CongressËuropean Agriculture in a global context”,Copenhagen, 11-15 July 2004, 541-542.

Statistical Analysis System (SAS) Institute(1999). SAS/STAT User’s Guide, Version 8,Cary, NC. USA.

Seber, G.A.F. (1984). Multivariate Observations.John Wiley & Sons, Inc. New York.

Shapiro, S.S. and M.B. Wilk. (1965). An Analysisof Variance Test for Normality (complete samples).Biometrika, 52.

Descargas

Publicado

2014-12-01

Cómo citar

Análisis discriminante canónico con técnicas gráficas multivariadas aplicado a un diseño con dos factores. (2014). Avances Investigación En Ingeniería, 11(2), 38-47. https://doi.org/10.18041/1794-4953/avances.2.227