Análisis Cienciométrico de la Intersección de la Educación STEM e Inteligencia Artificial: Tendencias y Perspectivas

Autores

  • Andres M. Amaya Hernandez Universidad Nacional de Colombia
  • Juan J. Osorio Díaz Universidad Nacional de Colombia
  • Sebastian C. Nova Universidad Nacional de Colombia
  • Eugene Calderón Maestre Universidad Nacional de Colombia
  • Danna M. Mariño-Angulo Universidad Nacional de Colombia

DOI:

https://doi.org/10.18041/2619-4465/interfaces.2.13401

Palavras-chave:

Educación STEM, Inteligencia Artificial, Análisis cienciométrico, Innovación educativa, Aprendizaje personalizado

Resumo

La intersección entre la Inteligencia Artificial (IA) y la educación STEM se ha convertido en un área de interés creciente. Aunque varios estudios han abordado la IA en contextos educativos, pocos han ofrecido una visión integral de su relación con los campos STEM. Por lo tanto, el objetivo de este artículo es examinar la evolución de la investigación académica en esta área a través de un enfoque cienciométrico. Se realizó una búsqueda sistemática en las bases de datos Scopus y Web of Science, centrándose en publicaciones que incluyen los términos "STEM", "educación", "artificial" e "inteligencia". Los resultados destacan dos fases principales: un periodo inicial de crecimiento gradual y una fase reciente de rápida expansión y consolidación. El análisis identifica a Estados Unidos, China y España como los países con mayor producción científica, y resalta el papel de autores clave como Kumar A. y Sharma R. El análisis de redes revela temas emergentes como el aprendizaje personalizado, la gamificación y el desarrollo de habilidades de pensamiento computacional. Este estudio proporciona una base sólida para que investigadores y educadores identifiquen tendencias y áreas de oportunidad para la innovación futura en la educación STEM impulsada por la IA.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1]J. Park, T. W. Teo, A. Teo, J. Chang, J. S. Huang, and S. Koo, “Integrating artificial intelligence into science lessons: teachers’ experiences and views,” Int. J. STEM Educ., vol. 10, no. 1, Oct. 2023, doi: 10.1186/s40594-023-00454-3. Available: http://dx.doi.org/10.1186/s40594-023-00454-3

[2]Y. Yang, W. Sun, D. Sun, and S. Z. Salas-Pilco, “Navigating the AI-Enhanced STEM education landscape: a decade of insights, trends, and opportunities,” Res. Sci. Technol. Educ., pp. 1–25, Jul. 2024, doi: 10.1080/02635143.2024.2370764. Available: http://dx.doi.org/10.1080/02635143.2024.2370764

[3]A. Okada, T. Sherborne, G. Panselinas, and G. Kolionis, “Fostering transversal skills through open schooling supported by the CARE-KNOW-DO pedagogical model and the UNESCO AI Competencies Framework,” Int. J. Artif. Intell. Educ., Mar. 2025, doi: 10.1007/s40593-025-00458-w. Available: http://dx.doi.org/10.1007/s40593-025-00458-w

[4]S. Robledo, L. Valencia, M. Zuluaga, O. A. Echeverri, and J. W. A. Valencia, “tosr: Create the Tree of Science from WoS and Scopus,” J. Sci. Res., vol. 13, no. 2, pp. 459–465, Aug. 2024, doi: 10.5530/jscires.13.2.36. Available: https://jscires.org/article/7422/

[5]K. M. Romero Villareal and M. C. M. Murgas, “Antimicrobial potential of secondary metabolites: AScientometric review,” Interfaces, vol. 7, no. 2, 2024, Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12712

[6]S. D. M. Oñate and A. F. T. Herazo, “Agrivoltaic systems: a contribution to sustainability,” Interfaces, vol. 7, no. 2, 2024, Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12713

[7]A. J. B. Berrocal and D. M. C. Rizo, “Scientometric analysis of the relationship between artificial intelligence and data engineering: Trends,collaboration, and evolution,” interfaces, vol. 7, no. 2, 2024, Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12714. [Accessed: Jul. 22, 2025]

[8]S. Valencia, M. Zuluaga, M. C. Florian Pérez, K. F. Montoya-Quintero, M. S. Candamil-Cortés, and S. Robledo, “Human gut microbiome: A connecting organ between nutrition, metabolism, and health,” Int. J. Mol. Sci., vol. 26, no. 9, Apr. 2025, doi: 10.3390/ijms26094112. Available: http://dx.doi.org/10.3390/ijms26094112

[9]S. Robledo, D.-C. Gil-Silva, E.-J. Villegas-Jaramillo, and C. Osorio, “Examining the role of monetary incentives and tie strength in mediating satisfaction and word of mouth in multilevel marketing companies: an entrepreneurial marketing perspective,” J. Res. Mark. Entrep., Mar. 2025, doi: 10.1108/jrme-07-2023-0117. Available: http://dx.doi.org/10.1108/jrme-07-2023-0117

[10]S. Robledo, B. Arias, C. García, I. Durley-Torres, and M. Zuluaga, “Margaret: Streamlining research productivity analysis in Colombia with an R package for GrupLAC integration,” Issu. Sci. Technol. Libr.., no. 108, Nov. 2024, doi: 10.29173/istl2777. Available: http://dx.doi.org/10.29173/istl2777

[11]N. T. Heffernan and C. L. Heffernan, “The ASSISTments ecosystem: Building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching,” Int. J. Artif. Intell. Educ., vol. 24, no. 4, pp. 470–497, Dec. 2014, doi: 10.1007/s40593-014-0024-x. Available: http://dx.doi.org/10.1007/s40593-014-0024-x

[12]G.-G. Lee, E. Latif, X. Wu, N. Liu, and X. Zhai, “Applying large language models and chain-of-thought for automatic scoring,” Computers and Education: Artificial Intelligence, vol. 6, no. 100213, p. 100213, Jun. 2024, doi: 10.1016/j.caeai.2024.100213. Available: http://dx.doi.org/10.1016/j.caeai.2024.100213

[13]T. Li, Y. Ji, and Z. Zhan, “Expert or machine? Comparing the effect of pairing student teacher with in-service teacher and ChatGPT on their critical thinking, learning performance, and cognitive load in an integrated-STEM course,” Asia Pac. J. Educ., vol. 44, no. 1, pp. 45–60, Jan. 2024, doi: 10.1080/02188791.2024.2305163. Available: http://dx.doi.org/10.1080/02188791.2024.2305163

[14]R. Williams et al., “AI + ethics curricula for middle school youth: Lessons learned from three project-based curricula,” Int. J. Artif. Intell. Educ., vol. 33, no. 2, pp. 1–59, Aug. 2022, doi: 10.1007/s40593-022-00298-y. Available: http://dx.doi.org/10.1007/s40593-022-00298-y

[15]N. Matsuda, W. W. Cohen, and K. R. Koedinger, “Teaching the teacher: Tutoring SimStudent leads to more effective cognitive tutor authoring,” Int. J. Artif. Intell. Educ., vol. 25, no. 1, pp. 1–34, Mar. 2015, doi: 10.1007/s40593-014-0020-1. Available: http://dx.doi.org/10.1007/s40593-014-0020-1

[16]F. Bellas, S. Guerreiro-Santalla, M. Naya, and R. J. Duro, “AI curriculum for European high schools: An embedded intelligence approach,” Int. J. Artif. Intell. Educ., vol. 33, no. 2, pp. 399–426, Jun. 2023, doi: 10.1007/s40593-022-00315-0. Available: http://dx.doi.org/10.1007/s40593-022-00315-0

[17]S. K. D’Mello, “Giving eyesight to the blind: Towards attention-aware AIED,” Int. J. Artif. Intell. Educ., vol. 26, no. 2, pp. 645–659, Jun. 2016, doi: 10.1007/s40593-016-0104-1. Available: http://dx.doi.org/10.1007/s40593-016-0104-1

[18]N. T. Heffernan et al., “The future of adaptive learning: Does the crowd hold the key?,” Int. J. Artif. Intell. Educ., vol. 26, no. 2, pp. 615–644, Jun. 2016, doi: 10.1007/s40593-016-0094-z. Available: http://dx.doi.org/10.1007/s40593-016-0094-z

[19]X. Zhai and J. Krajcik, Eds., Uses of artificial intelligence in STEM education. Oxford University PressOxford, 2024. doi: 10.1093/oso/9780198882077.001.0001. Available: http://dx.doi.org/10.1093/oso/9780198882077.001.0001

[20] M. Brouillette, “Guide, don’t hide: reprogramming learning in the wake of AI,” Nature, vol. 633, no. 8028, pp. S1–S3, Sep. 2024, doi: 10.1038/d41586-024-02837-0. Available: http://dx.doi.org/10.1038/d41586-024-02837-0

[21]T. Murugan, K. Periasamy, and A. M. Abirami, Adopting artificial intelligence tools in higher education. New York: CRC Press, 2024. doi: 10.1201/9781003469315. Available: http://dx.doi.org/10.1201/9781003469315

[22]GBD 2021 Nervous System Disorders Collaborators, “Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021,” Lancet Neurol., vol. 23, no. 4, pp. 344–381, Apr. 2024, doi: 10.1016/S1474-4422(24)00038-3. Available: http://dx.doi.org/10.1016/S1474-4422(24)00038-3

[23]D. E. Neafsey et al., “Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes,” Science, vol. 347, no. 6217, p. 1258522, Jan. 2015, doi: 10.1126/science.1258522. Available: http://dx.doi.org/10.1126/science.1258522

[24]N. Goernitz, M. Kloft, K. Rieck, and U. Brefeld, “Toward supervised anomaly detection,” J. Artif. Intell. Res., vol. 46, pp. 235–262, Feb. 2013, doi: 10.1613/jair.3623. Available: http://dx.doi.org/10.1613/jair.3623

[25]L. Casal-Otero, A. Catala, C. Fernández-Morante, M. Taboada, B. Cebreiro, and S. Barro, “AI literacy in K-12: a systematic literature review,” Int. J. STEM Educ., vol. 10, no. 1, Apr. 2023, doi: 10.1186/s40594-023-00418-7. Available: http://dx.doi.org/10.1186/s40594-023-00418-7

[26]L. C. Erickson and E. D. Thiessen, “Statistical learning of language: Theory, validity, and predictions of a statistical learning account of language acquisition,” Dev. Rev., vol. 37, pp. 66–108, Sep. 2015, doi: 10.1016/j.dr.2015.05.002. Available: http://dx.doi.org/10.1016/j.dr.2015.05.002

[27]CNCB-NGDC Members and Partners, “Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2023,” Nucleic Acids Res., vol. 51, no. D1, pp. D18–D28, Jan. 2023, doi: 10.1093/nar/gkac1073. Available: http://dx.doi.org/10.1093/nar/gkac1073

[28]N. A. ElSayed et al., “12. Retinopathy, neuropathy, and foot care: Standards of care in diabetes-2023,” Diabetes Care, vol. 46, no. Suppl 1, pp. S203–S215, Jan. 2023, doi: 10.2337/dc23-S012. Available: http://dx.doi.org/10.2337/dc23-S012

[29]K. W. Murch, S. J. Weber, K. M. Beck, E. Ginossar, and I. Siddiqi, “Reduction of the radiative decay of atomic coherence in squeezed vacuum,” Nature, vol. 499, no. 7456, pp. 62–65, Jul. 2013, doi: 10.1038/nature12264. Available: http://dx.doi.org/10.1038/nature12264

[30]P. Humar, M. Asaad, F. B. Bengur, and V. Nguyen, “ChatGPT is equivalent to first-year plastic surgery residents: Evaluation of ChatGPT on the Plastic Surgery In-Service Examination,” Aesthet. Surg. J., vol. 43, no. 12, pp. NP1085–NP1089, Nov. 2023, doi: 10.1093/asj/sjad130. Available: http://dx.doi.org/10.1093/asj/sjad130

[31]GBD 2021 Fertility and Forecasting Collaborators, “Global fertility in 204 countries and territories, 1950-2021, with forecasts to 2100: a comprehensive demographic analysis for the Global Burden of Disease Study 2021,” Lancet, vol. 403, no. 10440, pp. 2057–2099, May 2024, doi: 10.1016/S0140-6736(24)00550-6. Available: http://dx.doi.org/10.1016/S0140-6736(24)00550-6

[32] M. D. P. R. Puentes, C. J. Parada, y J. L. L. Pabón, "Estructuras desglosadas de trabajo (EDT) en la gestión de alcance de proyectos de desarrollo de software," Revista Colombiana de Tecnologías de Avanzada (RCTA), vol. 1, no. 39, pp. 51-58, 2022.

[33 C. J. Medina-Barahona, G.A. Mora, C. Cavache-Pabón, J. A. Salazar-Castro, H. A. Mora-Paz, & D. Mayorca-Torres, “Propuesta de arquitectura Iot orientada a la creación de prototipos para su aplicación en plataformas educativas y de investigación”. Revista Colombiana de Tecnologías de Avanzada, Vol. 1, No. 39, pp. 118–125, 2022.

Publicado

2025-12-27

Edição

Seção

Artículos

Como Citar

Amaya Hernandez, A. M. ., Osorio Díaz, J. J. ., Nova, S. C. ., Calderón Maestre, E. ., & Mariño-Angulo, D. M. . (2025). Análisis Cienciométrico de la Intersección de la Educación STEM e Inteligencia Artificial: Tendencias y Perspectivas. Interfaces, 8(2). https://doi.org/10.18041/2619-4465/interfaces.2.13401