Potencial antimicrobiano de los metabolitos secundarios: una revisióncienciométrica

Autores/as

  • Karol M. Romero Villareal Universidad Nacional de Colombia
  • Martha Celeste Moscote Murgas Universidad Nacional de Colombia

Palabras clave:

Actividad antimicrobiana, metabolitos secundarios, bioactivos, cienciometría, resistencia a antibióticos

Resumen

Existe una creciente preocupación en salud pública por la resistencia a los antibióticos, lo que pone
de relieve la necesidad de controlar los patógenos mediante el uso de alternativas a los fármacos convencionales. En este contexto, numerosos estudios han encontrado que los metabolitos
secundarios extraídos de plantas, hongos y bacterias tienen la capacidad de inhibir ciertos
microorganismos, a menudo patógenos. El objetivo de esta revisión es explorar el potencial
antimicrobiano de los metabolitos secundarios para sus posibles aplicaciones en los sectores de la
salud, la agricultura y la agroindustria. Para ello, se realizó un análisis cienciométrico mediante el
algoritmo Tree of Science, con una búsqueda bibliográfica realizada en las dos principales bases de
datos, WoS y Scopus, que abarca el periodo de 2003 a 2024. Adicionalmente, se realizó un análisis
de la producción científica por país, revista y autor que trabaja en este tema. Los resultados
identificaron tres grupos principales, diferenciados por el origen de los metabolitos: plantas, hongos
y bacterias. En conclusión, los metabolitos secundarios, independientemente de su origen, muestran
un potencial significativo para su uso en la salud como agentes de control de patógenos y en la
agricultura como sustitutos de los pesticidas químicos. 

Descargas

Referencias

[1] A. Estany-Gestal, A. Salgado-Barreira, and J. M. Vazquez-Lago, “Antibiotic Use and Antimicrobial Resistance: A Global Public Health Crisis,” Antibiotics (Basel), vol. 13, no. 9, Sep. 2024, doi: 10.3390/antibiotics13090900.

[2] J. Gelves-Díaz, L. Dorkis, R. Monroy-Sepúlveda, S. Rozo-Rincón, and Y. Romero-Arcos, “Physicochemical Properties of Combustion Ashes of Some Trees (Urban Pruning) Present in the Neotropical Region,” JRM, vol. 11, no. 10, pp. 3769–3787, 2023, doi: 10.32604/jrm.2023.029270.

[3] S. Namubiru et al., “Increasing trends of antibiotic resistance in Uganda: analysis of the national antimicrobial resistance surveillance data, 2018-2021,” BMC Infect Dis, vol. 24, no. 1, p. 930, Sep. 2024, doi: 10.1186/s12879-024-09806-y.

[4] T. Islam, M. A. Haque, H. R. Barai, A. Istiaq, and J.-J. Kim, “Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative,” Plants (Basel), vol. 13, no. 8, Apr. 2024, doi: 10.3390/plants13081135.

[5] N. M. Mostafa, M. Ayaz, M. El-Shazly, and A. N. B. Singab, “Editorial: Novel antimicrobials and antibiotics resistance modulating agents from natural products: Turning promises into Triumphs,” Front Pharmacol, vol. 14, p. 1184071, Apr. 2023, doi: 10.3389/fphar.2023.1184071.

[6] G. Raikwar, D. Kumar, S. Mohan, and P. Dahiya, “Synergistic potential of essential oils with antibiotics for antimicrobial resistance with emphasis on mechanism of action: A review,” Biocatal. Agric. Biotechnol., vol. 61, no. 103384, p. 103384, Oct. 2024, doi: 10.1016/j.bcab.2024.103384.

[7] H. Tang, Q. Wang, H. Xie, and W. Li, “The function of secondary metabolites in resisting stresses in horticultural plants,” Fruit Research, vol. 4, no. 1, pp. 0–0, 2024, doi: 10.48130/frures-0024-0014.

[8] A. J. Camacho Crespo and N. Montellano Duran, “Characterization of bioactive compounds, antioxidants and antimicrobial properties of Allagoptera leucocalyx,” Food Chemistry Advances, vol. 5, no. 100775, p. 100775, Dec. 2024, doi: 10.1016/j.focha.2024.100775.

[9] P. Song et al., “Screening, identification, and fermentation of a biocontrol strain against peony southern blight and extraction of secondary metabolites,” Agriculture, vol. 14, no. 6, p. 833, May 2024, doi: 10.3390/agriculture14060833.

[10] A. Abdel-Nasser, A. N. Badr, H. M. Fathy, M. A. Ghareeb, O. S. Barakat, and A. S. Hathout, “Antifungal, antiaflatoxigenic, and cytotoxic properties of bioactive secondary metabolites derived from Bacillus species,” Sci Rep, vol. 14, no. 1, p. 16590, Jul. 2024, doi: 10.1038/s41598-024-66700-y.

[11] Y. S. Jang et al., “Antiviral Effects of Secondary Metabolites from Leaves against the Pseudotyped Virus of SARS-CoV-2 Omicron,” Plants (Basel), vol. 12, no. 23, Nov. 2023, doi: 10.3390/plants12233942.

[12] C. Keswani et al., “Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides,” Appl Microbiol Biotechnol, vol. 104, no. 3, pp. 1013–1034, Feb. 2020, doi: 10.1007/s00253-019-10300-8.

[13] R. Conrado, T. C. Gomes, G. S. C. Roque, and A. O. De Souza, “Overview of Bioactive Fungal Secondary Metabolites: Cytotoxic and Antimicrobial Compounds,” Antibiotics (Basel), vol. 11, no. 11, Nov. 2022, doi: 10.3390/antibiotics11111604.

[14]K. S. Allemailem, “Antimicrobial Potential of Naturally Occurring Bioactive Secondary Metabolites,” J Pharm Bioallied Sci, vol. 13, no. 2, pp. 155–162, May 2021, doi: 10.4103/jpbs.JPBS_753_20.

[15]K. Keita, C. Darkoh, and F. Okafor, “Secondary plant metabolites as potent drug candidates against antimicrobial-resistant pathogens,” SN Appl Sci, vol. 4, no. 8, p. 209, Jul. 2022, doi: 10.1007/s42452-022-05084-y.

[16] B. Chen et al., “Cytotoxic and Antibacterial Isomalabaricane Terpenoids from the Sponge,” J Nat Prod, vol. 85, no. 7, pp. 1799–1807, Jul. 2022, doi: 10.1021/acs.jnatprod.2c00348.

[17]X. Si et al., “Matrix metalloproteinase-9 inhibition prevents aquaporin-4 depolarization-mediated glymphatic dysfunction in Parkinson’s disease,” J Adv Res, vol. 56, pp. 125–136, Feb. 2024, doi: 10.1016/j.jare.2023.03.004.

[18]R. Pranckutė, “Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world,” Publications, vol. 9, no. 1, p. 12, Mar. 2021, doi: 10.3390/publications9010012.

[19] A. M. Gómez-Restrepo, J. D. González-Ruiz, and S. Botero Botero, “Financial investment valuation models for photovoltaic and energy storage projects: Trends and challenges,” Energies, vol. 17, no. 11, p. 2653, May 2024, doi: 10.3390/en17112653.

[20] J. M. Moreno-Vargas, L. M. Echeverry-Cardona, D. A. Torres-Ceron, S. Amaya-Roncancio, E. Restrepo-Parra, and K. J. Castillo-Delgado, “Photocatalysis as an alternative for the remediation of wastewater: A scientometric review,” ChemEngineering, vol. 8, no. 5, p. 95, Sep. 2024, doi: 10.3390/chemengineering8050095.

[21] M. T. Manjarres et al., “A bibliometric analysis and literature review on emotional skills,” Front Psychol, vol. 14, p. 1040110, May 2023, doi: 10.3389/fpsyg.2023.1040110.

[22] S. Robledo, L. Valencia, M. Zuluaga, O. A. Echeverri, and J. W. A. Valencia, “tosr: Create the Tree of Science from WoS and Scopus,” J. Sci. Res., vol. 13, no. 2, pp. 459–465, Aug. 2024, doi: 10.5530/jscires.13.2.36.

[23] C. A. Martínez-Pinzón, “Mapeando el Panorama Cienciométrico de los Activos Intangibles: Tendencias, Mediciones y Dinámicas Colaborativas,” interfaces, vol. 6, no. 2, Dec. 2023, Accessed: Nov. 19, 2024. [Online]. Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/11190

[24] J. G. S. Moreno, D. C. Blanco-Galán, S. Mindiola-Garizado, and J. F. Ruiz-Muñoz, “Una Revisión Sistemática de Modelos Largos de Lenguaje (MLL) en Literatura Científica: Análisis Cienciométrico y Aplicación de Tree of Science,” interfaces, vol. 7, no. 1, Aug. 2024, Accessed: Nov. 19, 2024. [Online]. Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12054

[25] S. Nathaniel-Supple, G. Rojas-Quiceno, and R. C. Palacio-Ureche, “La AI, Transformando la Enseñanza y el Aprendizaje en las Ciencias y la Biología,” interfaces, vol. 7, no. 1, Aug. 2024, Accessed: Nov. 19, 2024. [Online]. Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12056

[26] M. M. Gómez-Ortiz and J. A. Vivares-Vergara, “Organic coffee production: mapping trends through bibliometric analysis,” Clío América, vol. 18, no. 35, Apr. 2024, doi: 10.21676/23897848.5650.

[27] L. Hincapié-Naranjo, S. Torres-Sarria, M. Y. Castro-Peña, and J. E. Vásquez-Hernández, “Theoretical-conceptual approach to inclusive marketing: a perspective from sensory disabilities,” Clío América, vol. 18, no. 35, pp. 126–139, May 2024, doi: 10.21676/23897848.5674.

[28] C. Valgas, S. M. de Souza, E. F. A. Smânia, and A. Smânia Jr, “Screening methods to determine antibacterial activity of natural products,” Braz. J. Microbiol., vol. 38, no. 2, pp. 369–380, Jun. 2007, doi: 10.1590/S1517-83822007000200034.

[29] R. S. Kumar et al., “Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits,” J Appl Microbiol, vol. 98, no. 1, pp. 145–154, 2005, doi: 10.1111/j.1365-2672.2004.02435.x.

[30] R.-B. Volk and F. H. Furkert, “Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth,” Microbiol Res, vol. 161, no. 2, pp. 180–186, 2006, doi: 10.1016/j.micres.2005.08.005.

[31] E. Moghaddam et al., “Baicalin, a metabolite of baicalein with antiviral activity against dengue virus,” Sci Rep, vol. 4, p. 5452, Jun. 2014, doi: 10.1038/srep05452.

[32] M. L. F. Bittencourt, P. R. Ribeiro, R. L. P. Franco, H. W. M. Hilhorst, R. D. de Castro, and L. G. Fernandez, “Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis: Use of correlation and multivariate analyses to identify potential bioactive compounds,” Food Res Int, vol. 76, no. Pt 3, pp. 449–457, Oct. 2015, doi: 10.1016/j.foodres.2015.07.008.

[33] A. Perczak, D. Gwiazdowska, K. Marchwińska, K. Juś, R. Gwiazdowski, and A. Waśkiewicz, “Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds,” Arch Microbiol, vol. 201, no. 8, pp. 1085–1097, Oct. 2019, doi: 10.1007/s00203-019-01673-5.

[34] V. K. Maurya, S. Kumar, A. K. Prasad, M. L. B. Bhatt, and S. K. Saxena, “Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor,” Virusdisease, vol. 31, no. 2, pp. 179–193, Jun. 2020, doi: 10.1007/s13337-020-00598-8.

[35] J. Tang et al., “Secondary Metabolites with Antioxidant and Antimicrobial Activities from,” Curr Issues Mol Biol, vol. 46, no. 7, pp. 6769–6782, Jul. 2024, doi: 10.3390/cimb46070404.

[36] L. L. García-Ariza, N. González-Rivillas, C. J. Díaz-Aguirre, C. Rocha-Roa, L. Padilla-Sanabria, and J. C. Castaño-Osorio, “Antiviral Activity of an Indole-Type Compound Derived from Natural Products, Identified by Virtual Screening by Interaction on Dengue Virus NS5 Protein,” Viruses, vol. 15, no. 7, Jul. 2023, doi: 10.3390/v15071563.

[37] W. Sokołowski, M. Marek-Kozaczuk, P. Sosnowski, E. Sajnaga, M. E. Jach, and M. A. Karaś, “Profiling Metabolites with Antifungal Activities from Endophytic Plant-Beneficial Strains of Pseudomonas chlororaphis Isolated from Chamaecytisus albus (Hack.) Rothm,” Molecules, vol. 29, no. 18, Sep. 2024, doi: 10.3390/molecules29184370.

[38] N. Roshan, T. V. Riley, and K. A. Hammer, “Antimicrobial activity of natural products against Clostridium difficile in vitro,” J Appl Microbiol, vol. 123, no. 1, pp. 92–103, Jul. 2017, doi: 10.1111/jam.13486.

[39] K. Tarman, U. Lindequist, K. Wende, A. Porzel, N. Arnold, and L. A. Wessjohann, “Isolation of a new natural product and cytotoxic and antimicrobial activities of extracts from fungi of Indonesian marine habitats,” Mar Drugs, vol. 9, no. 3, pp. 294–306, Feb. 2011, doi: 10.3390/md9030294.

[40] A. N. Williams and J. Stavrinides, “Pantoea Natural Product 3 is encoded by an eight-gene biosynthetic gene cluster and exhibits antimicrobial activity against multi-drug resistant Acinetobacter baumannii and Pseudomonas aeruginosa,” Microbiol Res, vol. 234, p. 126412, Jan. 2020, doi: 10.1016/j.micres.2020.126412.

[41] S. Kamisuki et al., “Isolation, structural determination, and antiviral activities of metabolites from vanitaracin A-producing Talaromyces sp,” J Antibiot (Tokyo), vol. 76, no. 2, pp. 75–82, Feb. 2023, doi: 10.1038/s41429-022-00585-9.

[42] Y.-L. Zhang, S. Li, D.-H. Jiang, L.-C. Kong, P.-H. Zhang, and J.-D. Xu, “Antifungal activities of metabolites produced by a termite-associated Streptomyces canus BYB02,” J Agric Food Chem, vol. 61, no. 7, pp. 1521–1524, Feb. 2013, doi: 10.1021/jf305210u.

[43] A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic susceptibility testing by a standardized single disk method,” Am J Clin Pathol, vol. 45, no. 4, pp. 493–496, Apr. 1966, [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/5325707

[44] J. N. Eloff, “A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria,” Planta Med, vol. 64, no. 8, pp. 711–713, Dec. 1998, doi: 10.1055/s-2006-957563.

[45] M. M. Cowan, “Plant products as antimicrobial agents,” Clin Microbiol Rev, vol. 12, no. 4, pp. 564–582, Oct. 1999, doi: 10.1128/CMR.12.4.564.

[46] M. Balouiri, M. Sadiki, and S. K. Ibnsouda, “Methods for evaluating antimicrobial activity: A review,” J Pharm Anal, vol. 6, no. 2, pp. 71–79, Apr. 2016, doi: 10.1016/j.jpha.2015.11.005.

[47] M. Jawad, “Characterization of Bioactive Chemical Compounds from Aspergillus terreus and Evaluation of Antibacterial and Antifungal Activity,” Jan. 2016, Accessed: Nov. 12, 2024. [Online]. Available: https://www.academia.edu/80835396/Characterization_of_Bioactive_Chemical_Compounds_from_Aspergillus_terreus_and_Evaluation_of_Antibacterial_and_Antifungal_Activity

[48] Y. Yahia, M. A. Benabderrahim, N. Tlili, M. Bagues, and K. Nagaz, “Bioactive compounds, antioxidant and antimicrobial activities of extracts from different plant parts of two Ziziphus Mill. species,” PLoS One, vol. 15, no. 5, p. e0232599, May 2020, doi: 10.1371/journal.pone.0232599.

[49] Z.-C. Lv, X.-L. Zhou, J.-H. Yan, Y.-H. Peng, and L.-X. Xu, “Secondary metabolites and antifungal activity of the endophytic fungus Streptomyces humidus SCB0232 from water chestnut,” Chem. Nat. Compd., vol. 58, no. 3, pp. 390–393, May 2022, doi: 10.1007/s10600-022-03689-8.

[50] C. Stracquadanio, J. M. Quiles, G. Meca, and S. O. Cacciola, “Antifungal Activity of Bioactive Metabolites Produced by and in Liquid Medium,” J Fungi (Basel), vol. 6, no. 4, Nov. 2020, doi: 10.3390/jof6040263.

[51] R. Abdelaziz et al., “A novel metabolite of Streptomyces coeruleorubidus exhibits antibacterial activity against Streptococcus agalactiae through modulation of physiological performance, inflammatory cytokines, apoptosis, and oxidative stress-correlated gene expressions in Nile tilapia (Oreochromis niloticus),” Fish Shellfish Immunol., vol. 148, no. 109496, p. 109496, May 2024, doi: 10.1016/j.fsi.2024.109496.

[52] F. Pouryousef, P. Shakib, K. Issazadeh, and M. R. Zolfaghari, “Identification of Bioactive Compounds of Streptomyces spp. Isolated from Qom Lake Sediments and Evaluation of its Antimicrobial Activity against Pseudomonas aeruginosa,” Curr. Drug Ther., vol. 19, no. 4, pp. 480–488, Jun. 2024, doi: 10.2174/1574885518666230817163907.

[53] F. A. Ripa, F. Nikkon, S. Zaman, and P. Khondkar, “Optimal conditions for antimicrobial metabolites production from a new Streptomyces sp. RUPA-08PR isolated from Bangladeshi soil,” Mycobiology, vol. 37, no. 3, pp. 211–214, Sep. 2009, doi: 10.4489/MYCO.2009.37.3.211.

[54] I. Abou El-Enain, A. Zeatar, A. Zayed, M. Elkhawaga, and Y. Mahmoud, “Diisooctyl phthalate as a secondary metabolite from actinomycete inhabit animal’s dung with promising antimicrobial activity,” Egypt. J. Chem., vol. 0, no. 0, pp. 0–0, Mar. 2023, doi: 10.21608/ejchem.2023.172600.7412.

[55] L. A. Naser, F. N. Jafer, and A. H. S. Aldhaher, “Antibacterial Activities and Chemical Characterization of the Secondary Metabolites of Aspergillus terreus,” PPASB, vol. 60, no. 2, pp. 181–191, Jun. 2023, doi: 10.53560/PPASB(60-2)786.

[56] M. E. Enany et al., “Antibacterial Activity of Bioactive Compounds from Endophytic Fungi against P. aeruginosa isolated from Freshwater Fishes,” Egypt. J. Aquat. Biol. Fish., vol. 26, no. 1, pp. 469–490, Jan. 2022, doi: 10.21608/ejabf.2022.220444.

[57] A. Wisetsai, R. Lekphrom, and F. T. Schevenels, “New anthracene and anthraquinone metabolites from Prismatomeris filamentosa and their antibacterial activities,” Nat. Prod. Res., vol. 35, no. 10, pp. 1582–1589, May 2021, doi: 10.1080/14786419.2019.1627352.

[58] Z. Yu et al., “Taxonomic Characterization, and Secondary Metabolite Analysis of sp. nov.: A Novel Actinomycete with Antifungal Activity,” Microorganisms, vol. 8, no. 1, Jan. 2020, doi: 10.3390/microorganisms8010077.

[59] A. S. Windyaswari, M. F. I. Nugraha, R. Hartati, and Elfahmi, “Isolation and antimicrobial activity of secondary metabolites of wall,” Nat Prod Res, pp. 1–9, Aug. 2024, doi: 10.1080/14786419.2024.2384081.

[60] M. O. Ngangoue et al., “Isolation and antibacterial activity of anomanol B and other secondary metabolites from the stem bark of Anonidium mannii (Annonaceae),” Nat. Prod. Res., vol. 38, no. 11, pp. 1813–1822, Jun. 2024, doi: 10.1080/14786419.2023.2223728.

[61] H. Gebrehiwot et al., “Antibacterial and antioxidant efficacies of secondary metabolites from the roots of Cyphostemma adenocaule: A combined in vitro and in silico study,” J. Trop. Med., vol. 2024, p. 1679695, Mar. 2024, doi: 10.1155/2024/1679695.

[62] S. M. Aljubiri, K. Mahmoud, S. A. Mahgoub, A. I. Almansour, and K. H. Shaker, “Bioactive compounds from Euphorbia schimperiana with cytotoxic and antibacterial activities,” S. Afr. J. Bot., vol. 141, pp. 357–366, Sep. 2021, doi: 10.1016/j.sajb.2021.05.021.

[63] O. Kisa, L. Oksuz, H. Servi, and A. I. Aysal, “Antibacterial activity of Hypericum perforatum L. (St. John’s wort) extracts against Gram-positive bacteria and characterisation of its secondary metabolites,” Nat. Prod. Res., pp. 1–8, Dec. 2023, doi: 10.1080/14786419.2023.2291702.

[64] S. M. Aljubiri, S. A. Mahgoub, A. I. Almansour, M. Shaaban, and K. H. Shaker, “Isolation of diverse bioactive compounds from Euphorbia balsamifera: Cytotoxicity and antibacterial activity studies,” Saudi J. Biol. Sci., vol. 28, no. 1, pp. 417–426, Jan. 2021, doi: 10.1016/j.sjbs.2020.10.025.

[65] A. J. Seukep, M. Fan, S. D. Sarker, V. Kuete, and M.-Q. Guo, “Plukenetia huayllabambana fruits: Analysis of bioactive compounds, antibacterial activity and relative action mechanisms,” Plants, vol. 9, no. 9, p. 1111, Aug. 2020, doi: 10.3390/plants9091111.

[66] U. Sandhiya, T. Manikandan, S. Thavamurugan, M. R. Kavipriya, S. K. Pavithra, and A. M. Lakshmi Prabha, “Profiling bioactive compounds of Pogostemon benghalensis (Burm.f.) Kuntze and its antibacterial activity,” Vegetos, vol. 37, no. 1, pp. 144–154, Jan. 2023, doi: 10.1007/s42535-022-00557-2.

[67] D. Sahu, R. Babu, S. Acharya, S. S. Swain, and G. Mahalik, “Antibacterial activity, toxicity and drug-likeness profiles of Woodfordia fruticosa-derived metabolites using computational-aided drug design platform,” International Journal of Experimental Research and Review, vol. 42, pp. 249–261, Aug. 2024, doi: 10.52756/ijerr.2024.v42.022.

[68] M. B. Karim, S. Kanaya, and M. Altaf-Ul-Amin, “Antibacterial activity prediction of plant secondary metabolites based on a combined approach of graph clustering and deep neural network,” Mol. Inform., vol. 41, no. 7, p. e2100247, Jul. 2022, doi: 10.1002/minf.202100247.

[69] J. K. Patel, Y. Mistry, R. Soni, and A. Jha, “Evaluation of antifungal activity of endophytic Bacillus spp. And identification of secondary metabolites produced against the phytopathogenic fungi,” Curr. Microbiol., vol. 81, no. 5, p. 128, Apr. 2024, doi: 10.1007/s00284-024-03652-6.

[70] P. Liu et al., “Antifungal activity of metabolites of Weissella cibaria KM14 isolated from traditional Korean food kimchi against three spoilage fungi,” Lebenson. Wiss. Technol., vol. 205, no. 116545, p. 116545, Aug. 2024, doi: 10.1016/j.lwt.2024.116545.

[71] S.-S. Huang, H.-X. Yang, J. He, J.-K. Liu, and T. Feng, “Discovery of a Biocontrol Strain Trichaptum laricinum: Its Metabolites and Antifungal Activity against Pathogenic Fungus Colletotrichum anthrisci,” J. Agric. Food Chem., vol. 72, no. 23, pp. 13154–13163, Jun. 2024, doi: 10.1021/acs.jafc.4c02028.

[72] S. A. Soliman, M. M. Khaleil, and R. A. Metwally, “Evaluation of the antifungal activity of bacillusamyloliquefaciens and B. velezensis and characterization of the bioactive secondary metabolites produced against plant pathogenic fungi,” Biology (Basel), vol. 11, no. 10, p. 1390, Sep. 2022, doi: 10.3390/biology11101390.

[73] J. Chakarwarti, V. Anand, S. Nayaka, and S. Srivastava, “In vitro antibacterial activity and secondary metabolite profiling of endolichenic fungi isolated from genus Parmotrema,” Curr. Microbiol., vol. 81, no. 7, p. 195, May 2024, doi: 10.1007/s00284-024-03719-4.

[74] J. Vaca, F. Salazar, A. Ortiz, and E. Sansinenea, “Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,” J. Antibiot. (Tokyo), vol. 73, no. 11, pp. 798–802, Nov. 2020, doi: 10.1038/s41429-020-0333-2.

[75] P. Singh et al., “Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa B18-A plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum,” Front. Microbiol., vol. 12, p. 628376, Feb. 2021, doi: 10.3389/fmicb.2021.628376.

[76] S. Syarifah, E. Elfita, H. Widjajanti, A. Setiawan, and A. R. Kurniawati, “Diversity of endophytic fungi from the root bark of Syzygium zeylanicum, and the antibacterial activity of fungal extracts, and secondary metabolite,” Biodiversitas, vol. 22, no. 10, Oct. 2021, doi: 10.13057/biodiv/d221051.

[77] Y. M. Wu et al., “Antifeedant and Antifungal Activities of Metabolites Isolated from the Coculture of Endophytic Fungus Aspergillus tubingensis S1120 with Red Ginseng,” Chemistry & biodiversity, vol. 19, no. 1, Jan. 2022, doi: 10.1002/cbdv.202100608.

Descargas

Publicado

2025-04-07

Número

Sección

Artículos

Cómo citar

Romero Villareal, K. M. ., & Moscote Murgas, M. C. . (2025). Potencial antimicrobiano de los metabolitos secundarios: una revisióncienciométrica. Interfaces, 7(2). https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12712