Sistemas agrivoltaicos: una contribución a la sostenibilidad
Palabras clave:
agrivoltaica, energías renovables, producción de alimentos, sistemas fotovoltaicos, sostenibilidad, uso del sueloResumen
En este artículo cienciométrico, se realizó un análisis para resaltar cómo los sistemas agrivoltaicos
representan una solución innovadora para satisfacer las necesidades alimentarias y energéticas
simultáneamente. Para el desarrollo de este estudio se utilizaron dos bases de datos esenciales, Web
of Science y Scopus, ambas reconocidas por albergar investigaciones altamente relevantes y, a
menudo, novedosas. Estas bases de datos proporcionaron información valiosa sobre cómo estos
sistemas mejoran la producción de alimentos y la generación de energía. Se empleó el método del
Árbol de la Ciencia para filtrar la abundancia de artículos obtenidos inicialmente de estas bases de
datos, permitiendo su clasificación en raíz, tronco y tres ramas principales, cada una centrada en
componentes clave de los sistemas agrivoltaicos. Los hallazgos se clasificaron en tres temas
principales: avances en la fabricación de paneles, incluidas mejoras en su resistencia a condiciones
extremas y la optimización de su orientación para capturar mejor los fotones. Estas mejoras también
contribuyen al aumento de la producción de alimentos y energía. El segundo tema describe cómo la
innovación en los sistemas agrivoltaicos contribuye a la seguridad alimentaria y energética,
especialmente en regiones con distintas condiciones y necesidades climáticas. Finalmente, el último
tema describe cómo el uso de algoritmos y tecnologías de optimización en la implementación de
sistemas agrivoltaicos contribuye a maximizar la producción tanto agrícola como energética.
Descargas
Referencias
[1]K. Shi et al., “Urban expansion and agricultural land loss in China: A multiscale perspective,” Sustainability, vol. 8, no. 8, p. 790, Aug. 2016, doi: 10.3390/su8080790.
[2]J. Freddy Gelves-D韆z, L. Dorkis, R. Monroy-Sep鷏veda, S. Rozo-Rinc髇, and Y. Alexis Romero-Arcos, “Physicochemical properties of combustion ashes of some trees (urban pruning) present in the neotropical region,” J. Renew. Mater., vol. 11, no. 10, pp. 3769–3787, 2023, doi: 10.32604/jrm.2023.029270.
[3]N. Armaroli and V. Balzani, “Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition,” Chemistry, vol. 22, no. 1, pp. 32–57, Jan. 2016, doi: 10.1002/chem.201503580.
[4]Y. Usta, G. Carioni, and G. Mutani, “Modeling and mapping solar energy production with photovoltaic panels on Politecnico di Torino university campus,” Energy Effic., vol. 17, no. 5, Jun. 2024, doi: 10.1007/s12053-024-10233-w.
[5]C. Dupraz, H. Marrou, G. Talbot, L. Dufour, A. Nogier, and Y. Ferard, “Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes,” Renew. Energy, vol. 36, no. 10, pp. 2725–2732, Oct. 2011, doi: 10.1016/j.renene.2011.03.005.
[6]M. F. Sakri, R. Ismail, F. A. A. Zakwan, and N. H. Hashim, “Enhancing concrete sustainability: the role of palm oil fuel ash in improving compressive strength and reducing environmental impact,” J. Build. Pathol. Rehabil., vol. 10, no. 1, Jun. 2025, doi: 10.1007/s41024-024-00524-1.
[7]S. Amaducci, X. Yin, and M. Colauzzi, “Agrivoltaic systems to optimise land use for electric energy production,” Appl. Energy, vol. 220, pp. 545–561, Jun. 2018, doi: 10.1016/j.apenergy.2018.03.081.
[8]S. Schindele et al., “Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications,” Appl. Energy, vol. 265, no. 114737, p. 114737, May 2020, doi: 10.1016/j.apenergy.2020.114737.
[9]T. Sekiyama and A. Nagashima, “Solar sharing for both food and clean energy production: Performance of agrivoltaic systems for corn, A typical shade-intolerant crop,” Environments, vol. 6, no. 6, p. 65, Jun. 2019, doi: 10.3390/environments6060065.
[10]H. Dinesh and J. M. Pearce, “The potential of agrivoltaic systems,” Renew. Sustain. Energy Rev., vol. 54, pp. 299–308, Feb. 2016, doi: 10.1016/j.rser.2015.10.024.
[11]A. Vargas-Hernández, S. Robledo, and G. R. Quiceno, “Virtual teaching for online learning from the perspective of higher education: A bibliometric analysis,” J. Sci. Res., vol. 13, no. 2, pp. 406–418, Aug. 2024, doi: 10.5530/jscires.13.2.32.
[12]J. Zhu and W. Liu, “A tale of two databases: the use of Web of Science and Scopus in academic papers,” Scientometrics, vol. 123, no. 1, pp. 321–335, Apr. 2020, doi: 10.1007/s11192-020-03387-8.
[13]A. M. Grisales, S. Robledo, and M. Zuluaga, “Topic modeling: Perspectives from a literature review,” IEEE Access, vol. 11, pp. 4066–4078, 2023, doi: 10.1109/access.2022.3232939.
[14]S. Robledo-Giraldo, “The vital role of scientometrics in modern research,” Clío Am., vol. 18, no. 35, pp. 1–3, May 2024, doi: 10.21676/23897848.6020.
[15]M. M. Gómez-Ortiz and J. A. Vivares-Vergara, “Producción de café orgánico: mapeando tendencias a través del análisis bibliométrico,” Clío Am., vol. 18, no. 35, Apr. 2024, doi: 10.21676/23897848.5650.
[16]L. Hincapié-Naranjo, S. Torres-Sarria, M. Y. Castro-Peña, and J. E. Vásquez-Hernández, “Theoretical-conceptual approach to inclusive marketing: a perspective from sensory disabilities,” Clío Am., vol. 18, no. 35, May 2024, doi: 10.21676/23897848.5674.
[17]S. Nathaniel-Supple, G. Rojas-Quiceno, and R. C. Palacio-Ureche, “La AI, Transformando la Enseñanza y el Aprendizaje en las Ciencias y la Biología,” interfaces, vol. 7, no. 1, Aug. 2024, [Online]. Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12056
[18]S. Robledo, L. Valencia, M. Zuluaga, O. A. Echeverri, and J. W. A. Valencia, “tosr: Create the Tree of Science from WoS and Scopus,” J. Sci. Res., vol. 13, no. 2, pp. 459–465, Aug. 2024, doi: 10.5530/jscires.13.2.36.
[19]J. G. Saurith Moreno, D. C. Blanco Galan, S. Mindiola Garizado, and J. F. Ruiz Muñoz, “Optimization of marketing strategies employing LLMs: A systematic review,” Lúmina, vol. 25, no. 2, p. E0058, Aug. 2024, doi: 10.30554/lumina.v25.n2.5147.2024.
[20]J. G. Saurith-Moreno, D. C. Blanco-Galán, S. Mindiola-Garizado, and J. F. Ruiz-Muñoz, “Una Revisión Sistemática de Modelos Largos de Lenguaje (MLL) en Literatura Científica: Análisis Cienciométrico y Aplicación de Tree of Science,” interfaces, vol. 7, no. 1, Aug. 2024, Accessed: Nov. 15, 2024. [Online]. Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12054
[21]S. Valencia, M. Zuluaga, A. Franco, M. Osorio, and S. Betancour, “Systematic review and bibliometric analysis of the metabolome found in human breast milk from healthy and gestational diabetes mellitus mothers,” Nova, vol. 21, no. 41, Dec. 2023, doi: 10.22490/24629448.7545.
[22]G. A. Barron-Gafford et al., “Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands,” Nat. Sustain., vol. 2, no. 9, pp. 848–855, Sep. 2019, doi: 10.1038/s41893-019-0364-5.
[23]M. A. Sturchio, S. A. Kannenberg, T. A. Pinkowitz, and A. K. Knapp, “Solar arrays create novel environments that uniquely alter plant responses,” Plants People Planet, Jul. 2024, doi: 10.1002/ppp3.10554.
[24]K. Mehta, M. J. Shah, and W. Zörner, “Agri-PV (agrivoltaics) in developing countries: Advancing sustainable farming to address the water–energy–food nexus,” Energies, vol. 17, no. 17, p. 4440, Sep. 2024, doi: 10.3390/en17174440.
[25]Z. Hu, “Doomed in the agrivoltaic campaign? The case of Chinese smallholder agriculture in the deployment of agrivoltaic projects,” Energy Sustain. Dev., vol. 83, no. 101562, p. 101562, Dec. 2024, doi: 10.1016/j.esd.2024.101562.
[26]H.-W. Wang, A. Dodd, and Y. Ko, “Resolving the conflict of greens: A GIS-based and participatory least-conflict siting framework for solar energy development in southwest Taiwan,” Renew. Energy, vol. 197, pp. 879–892, Sep. 2022, doi: 10.1016/j.renene.2022.07.094.
[27]F. Jafarzadeh et al., “Flexible, Transparent, and Bifacial Perovskite Solar Cells and Modules Using the Wide-Band Gap FAPbBr Perovskite Absorber,” ACS Appl Mater Interfaces, vol. 16, no. 14, pp. 17607–17616, Apr. 2024, doi: 10.1021/acsami.4c01071.
[28]L. La Notte et al., “Hybrid and organic photovoltaics for greenhouse applications,” Appl. Energy, vol. 278, no. 115582, p. 115582, Nov. 2020, doi: 10.1016/j.apenergy.2020.115582.
[29]S. Gorjian et al., “Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology,” Renew. Sustain. Energy Rev., vol. 158, no. 112126, p. 112126, Apr. 2022, doi: 10.1016/j.rser.2022.112126.
[30]C. Toledo and A. Scognamiglio, “Agrivoltaic systems design and assessment: A critical review, and a descriptive model towards a sustainable landscape vision (three-dimensional agrivoltaic patterns),” Sustainability, vol. 13, no. 12, p. 6871, Jun. 2021, doi: 10.3390/su13126871.
[31]K. Proctor, G. Murthy, and C. Higgins, “Agrivoltaics align with Green New Deal goals while supporting investment in the US’ rural economy,” Sustainability, vol. 13, no. 1, p. 137, Dec. 2020, doi: 10.3390/su13010137.
[32]W. Lytle et al., “Conceptual design and rationale for a new agrivoltaics concept: Pasture-raised rabbits and solar farming,” J. Clean. Prod., vol. 282, no. 124476, p. 124476, Feb. 2021, doi: 10.1016/j.jclepro.2020.124476.
[33]R. A. Gonocruz, S. Uchiyama, and Y. Yoshida, “Modeling of large-scale integration of agrivoltaic systems: Impact on the Japanese power grid,” J. Clean. Prod., vol. 363, no. 132545, p. 132545, Aug. 2022, doi: 10.1016/j.jclepro.2022.132545.
[34]A. S. M. M. Hasan, P. Kesapabutr, and B. Möller, “Bangladesh’s pathways to net-zero transition: Reassessing country's solar PV potential with high-resolution GIS data,” Energy Sustain. Dev., vol. 81, no. 101511, p. 101511, Aug. 2024, doi: 10.1016/j.esd.2024.101511.
[35]M. Laub, L. Pataczek, A. Feuerbacher, S. Zikeli, and P. Högy, “Contrasting yield responses at varying levels of shade suggest different suitability of crops for dual land-use systems: a meta-analysis,” Agron. Sustain. Dev., vol. 42, no. 3, Jun. 2022, doi: 10.1007/s13593-022-00783-7.
[36]D. A. Chalkias, C. Charalampopoulos, A. K. Andreopoulou, A. Karavioti, and E. Stathatos, “Spectral engineering of semi-transparent dye-sensitized solar cells using new triphenylamine-based dyes and an iodine-free electrolyte for greenhouse-oriented applications,” J. Power Sources, vol. 496, no. 229842, p. 229842, Jun. 2021, doi: 10.1016/j.jpowsour.2021.229842.
[37]O. A. Katsikogiannis, H. Ziar, and O. Isabella, “Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach,” Appl. Energy, vol. 309, no. 118475, p. 118475, Mar. 2022, doi: 10.1016/j.apenergy.2021.118475.
[38]H. J. Lee, H. H. Park, Y. O. Kim, and Y. I. Kuk, “Crop cultivation underneath Agro-photovoltaic systems and its effects on crop growth, yield, and photosynthetic efficiency,” Agronomy (Basel), vol. 12, no. 8, p. 1842, Aug. 2022, doi: 10.3390/agronomy12081842.
[39]A. S. Pascaris, “Examining existing policy to inform a comprehensive legal framework for agrivoltaics in the U.S,” Energy Policy, vol. 159, no. 112620, p. 112620, Dec. 2021, doi: 10.1016/j.enpol.2021.112620.
[40]R. Meitzner, U. S. Schubert, and H. Hoppe, “Agrivoltaics—the perfect fit for the future of organic photovoltaics,” Adv. Energy Mater., vol. 11, no. 1, p. 2002551, Jan. 2021, doi: 10.1002/aenm.202002551.
[41]Y. Zhao, Y. Zhu, H.-W. Cheng, R. Zheng, D. Meng, and Y. Yang, “A review on semitransparent solar cells for agricultural application,” Mater. Today Energy, vol. 22, no. 100852, p. 100852, Dec. 2021, doi: 10.1016/j.mtener.2021.100852.
[42]O. Ayadi, J. T. Al-Bakri, M. E. B. Abdalla, and Q. Aburumman, “The potential of agrivoltaic systems in Jordan,” Appl. Energy, vol. 372, no. 123841, p. 123841, Oct. 2024, doi: 10.1016/j.apenergy.2024.123841.
[43]Z. Xia et al., “Balancing photovoltaic development and cropland protection: Assessing agrivoltaic potential in China,” Sustain. Prod. Consum., vol. 50, pp. 205–215, Oct. 2024, doi: 10.1016/j.spc.2024.08.001.
[44]S. Cinderby, K. A. Parkhill, S. Langford, and C. Muhoza, “Harnessing the sun for agriculture: Pathways to the successful expansion of Agrivoltaic systems in East Africa,” Energy Res. Soc. Sci., vol. 116, no. 103657, p. 103657, Oct. 2024, doi: 10.1016/j.erss.2024.103657.
[45]B. A. Johnson, Y. Arino, D. B. Magcale-Macandog, X. Liu, and M. Yamanoshita, “Potential of agrivoltaics in ASEAN considering a scenario where agroforestry expansion is also pursued,” Resour. Conserv. Recycl., vol. 209, no. 107808, p. 107808, Oct. 2024, doi: 10.1016/j.resconrec.2024.107808.
[46]Al-Amin et al., “Agrivoltaics system for sustainable agriculture and green energy in Bangladesh,” Appl. Energy, vol. 371, no. 123709, p. 123709, Oct. 2024, doi: 10.1016/j.apenergy.2024.123709.
[47]T. Petrakis, V. Thomopoulos, and A. Kavga, “Algorithmic advancements in agrivoltaics: Modeling shading effects of semi-transparent photovoltaics,” Smart Agricultural Technology, vol. 9, no. 100541, p. 100541, Dec. 2024, doi: 10.1016/j.atech.2024.100541.
[48]Y. Hu, X. Zhang, and X. Ma, “Agrivoltaics with semitransparent panels can maintain yield and quality in soybean production,” Sol. Energy, vol. 282, no. 112978, p. 112978, Nov. 2024, doi: 10.1016/j.solener.2024.112978.
[49]Z. Ghaffarpour, M. Fakhroleslam, and M. Amidpour, “Calculation of energy consumption, tomato yield, and electricity generation in a PV-integrated greenhouse with different solar panels configuration,” Renew. Energy, vol. 229, no. 120723, p. 120723, Aug. 2024, doi: 10.1016/j.renene.2024.120723.
[50]S.-N. Asa’a et al., “Assessing the light scattering properties of c-Si PV module materials for agrivoltaics: Towards more homogeneous light distribution in crop canopies,” Sol. Energy, vol. 276, no. 112690, p. 112690, Jul. 2024, doi: 10.1016/j.solener.2024.112690.