Quantum and Artificial Intelligence: Exploring Their Convergence Through Scientometrics

Autores

  • Carlos Alberto Oviedo Machado Universidad Nacional de Colombia
  • Luiyi David Brito Palmezano Universidad Nacional de Colombia
  • William Alcides Trillos Sarmiento Universidad Nacional de Colombia
  • Tatiana Isabel Causil-Contreras Universidad Nacional de Colombia

DOI:

https://doi.org/10.18041/2619-4465/interfaces.1.13396

Palavras-chave:

Artificial Intelligence, Quantum, Scientometrics, Technological convergence, Network analysis

Resumo

Technological and scientific advancements in recent years have enabled us to manipulate technologies that were once considered unimaginable. Among these, Artificial Intelligence (AI) and quantum physics have emerged as pivotal forces, significantly enhancing our capacity to achieve goals and solve complex problems. Given their growing relevance, a comprehensive review of the scientific output underpinning this new era is both timely and necessary. Such a review allows us to trace the increasing scholarly interest in these domains and to identify emerging trends in the synergy between them. Accordingly, the objective of this article is to present a scientometric analysis of the academic literature related to both AI and quantum science. To achieve this, we examined peer-reviewed articles from prestigious databases such as Scopus and Web of Science. The study spans the period from 2004 to 2024, analyzing key metrics such as publication growth, influential authors, leading institutions, and the geographic distribution of research. The results reveal an exponential growth trajectory, with a marked increase in interdisciplinary publications over the last decade. This analysis provides a structured overview of the intersection between quantum computing and AI, offering a solid foundation for researchers and practitioners to identify priority areas for future innovation.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1]F. F. Flöther et al., “How quantum computing can enhance biomarker discovery,” Patterns (N. Y.), vol. 6, no. 6, p. 101236, April. 2025, doi: 10.1016/j.patter.2025.101236. Available: https://doi.org/10.1016/j.patter.2025.101236

[2]S. S. Singh, S. Kumar, R. Ahuja, and J. Barua, “Fusion of quantum computing and explainable AI: A comprehensive survey on transformative healthcare solutions,” Inf. Fusion, vol. 122, no. 103217, p. 103217, Oct. 2025, doi: 10.1016/j.inffus.2025.103217. Available: https://doi.org/10.1016/j.inffus.2025.103217

[3]A. Agnihotri and S. Bhattacharya, “Chatbots’ effectiveness in service recovery,” Int. J. Inf. Manage., vol. 76, no. 102679, p. 102679, Jun. 2024, doi: 10.1016/j.ijinfomgt.2023.102679. Available: https://doi.org/10.1016/j.ijinfomgt.2023.102679

[4]R. Ramya, P. Kumar, D. Dhanasekaran, R. S. Kumar, and S. A. Sharavan, “A review of quantum communication and information networks with advanced cryptographic applications using machine learning, deep learning techniques,” Franklin Open, vol. 10, no. 100223, p. 100223, Mar. 2025, doi: 10.1016/j.fraope.2025.100223. Available: https://doi.org/10.1016/j.fraope.2025.100223

[5]P. A. Erdman et al., “Artificially intelligent Maxwell’s demon for optimal control of open quantum systems,” Quantum Sci. Technol., vol. 10, no. 2, p. 025047, Apr. 2025, doi: 10.1088/2058-9565/adbccf. Available: http://dx.doi.org/10.1088/2058-9565/adbccf

[6]C. Malica et al., “Artificial intelligence for advanced functional materials: exploring current and future directions,” JPhys Mater., vol. 8, no. 2, p. 021001, Apr. 2025, doi: 10.1088/2515-7639/adc29d. Available: http://dx.doi.org/10.1088/2515-7639/adc29d

[7]T. Pook et al., “Assessing the potential of quantum computing in agriculture,” Comput. Electron. Agric., vol. 235, no. 110332, p. 110332, Aug. 2025, doi: 10.1016/j.compag.2025.110332. Available: http://dx.doi.org/10.1016/j.compag.2025.110332

[8]V. Kumar, A. R. Ashraf, and W. Nadeem, “AI-powered marketing: What, where, and how?,” Int. J. Inf. Manage., vol. 77, no. 102783, p. 102783, Aug. 2024, doi: 10.1016/j.ijinfomgt.2024.102783. Available: http://dx.doi.org/10.1016/j.ijinfomgt.2024.102783

[9]S. D. M. Oñate and A. F. T. Herazo, “Agrivoltaic systems: a contribution to sustainability,” interfaces, vol. 7, no. 2, 2024, Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12713. [Accessed: Jun. 24, 2025]

[10]K. M. Romero Villareal and M. C. M. Murgas, “Antimicrobial Potential of Secondary Metabolites: AScientometric Review,” interfaces, vol. 7, no. 2, 2024, Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12712. [Accessed: Jan. 24, 2025]

[11]A. J. B. Berrocal and D. M. C. Rizo, “Scientometric Analysis of the Relationship Between Artificial Intelligence and Data Engineering: Trends,Collaboration, and Evolution,” interfaces, vol. 7, no. 2, 2024, Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12714. [Accessed: Jan. 24, 2025]

[12]S. Valencia, M. Zuluaga, M. C. Florian Pérez, K. F. Montoya-Quintero, M. S. Candamil-Cortés, and S. Robledo, “Human Gut Microbiome: A Connecting Organ Between Nutrition, Metabolism, and Health,” Int J Mol Sci, vol. 26, no. 9, Apr. 2025, doi: 10.3390/ijms26094112. Available: http://dx.doi.org/10.3390/ijms26094112

[13]S. Robledo, B. Arias, C. García, I. Durley-Torres, and M. Zuluaga, “Margaret: Streamlining research productivity analysis in Colombia with an R package for GrupLAC integration,” Issu. Sci. Technol. Libr.., no. 108, Nov. 2024, doi: 10.29173/istl2777. Available: http://dx.doi.org/10.29173/istl2777

[14]S. Robledo, L. Valencia, M. Zuluaga, O. A. Echeverri, and J. W. A. Valencia, “tosr: Create the Tree of Science from WoS and Scopus,” J. Sci. Res., vol. 13, no. 2, pp. 459–465, Aug. 2024, doi: 10.5530/jscires.13.2.36. Available: http://dx.doi.org/10.5530/jscires.13.2.36

[15]V. Dunjko and H. J. Briegel, “Machine learning & artificial intelligence in the quantum domain: a review of recent progress,” Rep. Prog. Phys., vol. 81, no. 7, p. 074001, Jul. 2018, doi: 10.1088/1361-6633/aab406. Available: http://dx.doi.org/10.1088/1361-6633/aab406

[16]Y. Liu et al., “Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication,” Nat Commun, vol. 10, no. 1, p. 2409, Jun. 2019, doi: 10.1038/s41467-019-10406-7. Available: http://dx.doi.org/10.1038/s41467-019-10406-7

[17]H. Tian et al., “Piezoelectric actuation for integrated photonics,” Adv. Opt. Photonics, Sep. 2024, doi: 10.1364/aop.529288. Available: http://dx.doi.org/10.1364/aop.529288

[18]J. S. Colton and K. R. Hansen, Eds., Two-dimensional metal Halide perovskites, 2024th ed. Singapore, Singapore: Springer, 2024. doi: 10.1007/978-981-99-7830-4. Available: http://dx.doi.org/10.1007/978-981-99-7830-4

[19]M. P. Cuellar, L. G. B. Ruiz, and M. C. Pegalajar, “Implementation of classical decision trees in a quantum computing paradigm,” in Lecture Notes in Computer Science, in Lecture notes in computer science. Cham: Springer Nature Switzerland, 2024, pp. 226–237. doi: 10.1007/978-3-031-74183-8_19. Available: http://dx.doi.org/10.1007/978-3-031-74183-8_19

[20]D. Solis-Martin, J. Galan-Paez, and J. Borrego-Diaz, “Bayesian model selection pruning in predictive maintenance,” in Lecture Notes in Computer Science, in Lecture notes in computer science. Cham: Springer Nature Switzerland, 2024, pp. 263–274. doi: 10.1007/978-3-031-74183-8_22. Available: http://dx.doi.org/10.1007/978-3-031-74183-8_22

[21]D. E. García and N. DeCastro-García, “Application of transfer learning to online models in malware detection,” in Lecture Notes in Computer Science, in Lecture notes in computer science. Cham: Springer Nature Switzerland, 2024, pp. 177–189. doi: 10.1007/978-3-031-74183-8_15. Available: http://dx.doi.org/10.1007/978-3-031-74183-8_15

[22]H. Goto, “Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network,” Sci Rep, vol. 6, p. 21686, Feb. 2016, doi: 10.1038/srep21686. Available: http://dx.doi.org/10.1038/srep21686

[23]M. R. Habibi, S. Golestan, Y. Wu, J. M. Guerrero, and J. C. Vasquez, “Electrical load forecasting in power systems based on quantum computing using time series-based quantum artificial intelligence,” Sci Rep, vol. 15, no. 1, p. 7429, Mar. 2025, doi: 10.1038/s41598-025-89933-x. Available: http://dx.doi.org/10.1038/s41598-025-89933-x

[24]L. Bischof, S. Teodoropol, R. M. Füchslin, and K. Stockinger, “Hybrid quantum neural networks show strongly reduced need for free parameters in entity matching,” Sci Rep, vol. 15, no. 1, p. 4318, Feb. 2025, doi: 10.1038/s41598-025-88177-z. Available: http://dx.doi.org/10.1038/s41598-025-88177-z

[25]I. D. Lazarev, M. Narozniak, T. Byrnes, and A. N. Pyrkov, “Hybrid quantum-classical unsupervised data clustering based on the self-organizing feature map,” Phys. Rev. A (Coll. Park.), vol. 111, no. 1, Jan. 2025, doi: 10.1103/physreva.111.012416. Available: http://dx.doi.org/10.1103/physreva.111.012416

[26]Y. Wu, J. Yao, P. Zhang, and X. Li, “Ra

ndomness-Enhanced Expressivity of Quantum Neural Networks,” Phys Rev Lett, vol. 132, no. 1, p. 010602, Jan. 2024, doi: 10.1103/PhysRevLett.132.010602. Available: http://dx.doi.org/10.1103/PhysRevLett.132.010602

[27]O. Coskuner-Weber, M. G. Habiboglu, D. Teplow, and V. N. Uversky, “From Quantum Mechanics, Classical Mechanics, and Bioinformatics to Artificial Intelligence Studies in Neurodegenerative Diseases,” Methods Mol Biol, vol. 2340, pp. 139–173, 2022, doi: 10.1007/978-1-0716-1546-1_8. Available: http://dx.doi.org/10.1007/978-1-0716-1546-1_8

[28]B. Dudas and M. A. Miteva, “Computational and artificial intelligence-based approaches for drug metabolism and transport prediction,” Trends Pharmacol Sci, vol. 45, no. 1, pp. 39–55, Jan. 2024, doi: 10.1016/j.tips.2023.11.001. Available: http://dx.doi.org/10.1016/j.tips.2023.11.001

[29]Z. Zhu et al., “Automated Generation and Analysis of Molecular Images Using Generative Artificial Intelligence Models,” J Phys Chem Lett, vol. 15, no. 7, pp. 1985–1992, Feb. 2024, doi: 10.1021/acs.jpclett.3c03504. Available: http://dx.doi.org/10.1021/acs.jpclett.3c03504

[30]A. Fallani, L. Medrano Sandonas, and A. Tkatchenko, “Inverse mapping of quantum properties to structures for chemical space of small organic molecules,” Nat Commun, vol. 15, no. 1, p. 6061, Jul. 2024, doi: 10.1038/s41467-024-50401-1. Available: http://dx.doi.org/10.1038/s41467-024-50401-1

[31]Y. Bian et al., “20 Gbps real-time source-independent quantum random number generator based on a silicon photonic chip,” Opt Lett, vol. 50, no. 4, pp. 1216–1219, Feb. 2025, doi: 10.1364/OL.544982. Available: http://dx.doi.org/10.1364/OL.544982

[32]F. Flamini, M. Krumm, L. J. Fiderer, T. Müller, and H. J. Briegel, “Towards interpretable quantum machine learning via single-photon quantum walks,” Quantum Sci. Technol., vol. 9, no. 4, p. 045011, Oct. 2024, doi: 10.1088/2058-9565/ad5907. Available: http://dx.doi.org/10.1088/2058-9565/ad5907

[33]Y. Li, Y. Zhao, and Y. Zhang, “A spanning tree construction algorithm for industrial wireless sensor networks based on quantum artificial bee colony,” EURASIP J. Wirel. Commun. Netw., vol. 2019, no. 1, Dec. 2019, doi: 10.1186/s13638-019-1496-z. Available: http://dx.doi.org/10.1186/s13638-019-1496-z

[34] L. Ye, Y. Wang, and X. Zheng, “Simulating many-body open quantum systems by harnessing the power of artificial intelligence and quantum computing,” J Chem Phys, vol. 162, no. 12, Mar. 2025, doi: 10.1063/5.0242648. Available: http://dx.doi.org/10.1063/5.0242648

[35]S. Park, H. Baek, and J. Kim, “The matrix: Quantum AI for interacting two worlds in prioritized metaverse spaces,” IEEE Commun. Mag., vol. 62, no. 12, pp. 97–103, Dec. 2024, doi: 10.1109/mcom.001.2300457. Available: http://dx.doi.org/10.1109/mcom.001.2300457

[36]A. Aldossary et al., “In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back,” Adv Mater, vol. 36, no. 30, p. e2402369, Jul. 2024, doi: 10.1002/adma.202402369. Available: http://dx.doi.org/10.1002/adma.202402369

Publicado

2025-12-27

Edição

Seção

Artículos

Como Citar

Oviedo Machado, C. A. ., Brito Palmezano, L. D. ., Trillos Sarmiento, W. A. ., & Causil-Contreras, T. I. . (2025). Quantum and Artificial Intelligence: Exploring Their Convergence Through Scientometrics. Interfaces, 8(1). https://doi.org/10.18041/2619-4465/interfaces.1.13396