Agrivoltaic systems: a contribution to sustainability
Palavras-chave:
Agrivoltaics, Renewable energies, Food production, Photovoltaic systems, Sustainability, Land useResumo
In this scientometric article, an analysis was conducted to highlight how agrivoltaic systems represent
an innovative solution to meet food and energy needs simultaneously. For the development of this
study, two essential databases, Web of Science and Scopus, were utilized, both recognized for housing
highly relevant and, often, novel research. These databases provided valuable information on how
these systems improve food production and energy generation. The Tree of Science method was
employed to filter the abundance of articles initially obtained from these databases, allowing their
classification into root, trunk, and three main branches, each focused on key components of
agrivoltaic systems. The findings were categorized into three main themes: advances in panel
manufacturing, including improvements in their resistance to extreme conditions and the optimization
of their orientation to better capture photons. These improvements also contribute to the increase in
food and energy production. The second theme describes how innovation in agrivoltaic systems
contributes to food and energy security, especially in regions with distinct climatic conditions and
needs. Finally, the last theme describes how the use of algorithms and optimization technologies in
the implementation of agrivoltaic systems contributes to maximizing both agricultural and energy
production.
Downloads
Referências
[1]K. Shi et al., “Urban expansion and agricultural land loss in China: A multiscale perspective,” Sustainability, vol. 8, no. 8, p. 790, Aug. 2016, doi: 10.3390/su8080790.
[2]J. Freddy Gelves-D韆z, L. Dorkis, R. Monroy-Sep鷏veda, S. Rozo-Rinc髇, and Y. Alexis Romero-Arcos, “Physicochemical properties of combustion ashes of some trees (urban pruning) present in the neotropical region,” J. Renew. Mater., vol. 11, no. 10, pp. 3769–3787, 2023, doi: 10.32604/jrm.2023.029270.
[3]N. Armaroli and V. Balzani, “Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition,” Chemistry, vol. 22, no. 1, pp. 32–57, Jan. 2016, doi: 10.1002/chem.201503580.
[4]Y. Usta, G. Carioni, and G. Mutani, “Modeling and mapping solar energy production with photovoltaic panels on Politecnico di Torino university campus,” Energy Effic., vol. 17, no. 5, Jun. 2024, doi: 10.1007/s12053-024-10233-w.
[5]C. Dupraz, H. Marrou, G. Talbot, L. Dufour, A. Nogier, and Y. Ferard, “Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes,” Renew. Energy, vol. 36, no. 10, pp. 2725–2732, Oct. 2011, doi: 10.1016/j.renene.2011.03.005.
[6]M. F. Sakri, R. Ismail, F. A. A. Zakwan, and N. H. Hashim, “Enhancing concrete sustainability: the role of palm oil fuel ash in improving compressive strength and reducing environmental impact,” J. Build. Pathol. Rehabil., vol. 10, no. 1, Jun. 2025, doi: 10.1007/s41024-024-00524-1.
[7]S. Amaducci, X. Yin, and M. Colauzzi, “Agrivoltaic systems to optimise land use for electric energy production,” Appl. Energy, vol. 220, pp. 545–561, Jun. 2018, doi: 10.1016/j.apenergy.2018.03.081.
[8]S. Schindele et al., “Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications,” Appl. Energy, vol. 265, no. 114737, p. 114737, May 2020, doi: 10.1016/j.apenergy.2020.114737.
[9]T. Sekiyama and A. Nagashima, “Solar sharing for both food and clean energy production: Performance of agrivoltaic systems for corn, A typical shade-intolerant crop,” Environments, vol. 6, no. 6, p. 65, Jun. 2019, doi: 10.3390/environments6060065.
[10]H. Dinesh and J. M. Pearce, “The potential of agrivoltaic systems,” Renew. Sustain. Energy Rev., vol. 54, pp. 299–308, Feb. 2016, doi: 10.1016/j.rser.2015.10.024.
[11]A. Vargas-Hernández, S. Robledo, and G. R. Quiceno, “Virtual teaching for online learning from the perspective of higher education: A bibliometric analysis,” J. Sci. Res., vol. 13, no. 2, pp. 406–418, Aug. 2024, doi: 10.5530/jscires.13.2.32.
[12]J. Zhu and W. Liu, “A tale of two databases: the use of Web of Science and Scopus in academic papers,” Scientometrics, vol. 123, no. 1, pp. 321–335, Apr. 2020, doi: 10.1007/s11192-020-03387-8.
[13]A. M. Grisales, S. Robledo, and M. Zuluaga, “Topic modeling: Perspectives from a literature review,” IEEE Access, vol. 11, pp. 4066–4078, 2023, doi: 10.1109/access.2022.3232939.
[14]S. Robledo-Giraldo, “The vital role of scientometrics in modern research,” Clío Am., vol. 18, no. 35, pp. 1–3, May 2024, doi: 10.21676/23897848.6020.
[15]M. M. Gómez-Ortiz and J. A. Vivares-Vergara, “Producción de café orgánico: mapeando tendencias a través del análisis bibliométrico,” Clío Am., vol. 18, no. 35, Apr. 2024, doi: 10.21676/23897848.5650.
[16]L. Hincapié-Naranjo, S. Torres-Sarria, M. Y. Castro-Peña, and J. E. Vásquez-Hernández, “Theoretical-conceptual approach to inclusive marketing: a perspective from sensory disabilities,” Clío Am., vol. 18, no. 35, May 2024, doi: 10.21676/23897848.5674.
[17]S. Nathaniel-Supple, G. Rojas-Quiceno, and R. C. Palacio-Ureche, “La AI, Transformando la Enseñanza y el Aprendizaje en las Ciencias y la Biología,” interfaces, vol. 7, no. 1, Aug. 2024, [Online]. Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12056
[18]S. Robledo, L. Valencia, M. Zuluaga, O. A. Echeverri, and J. W. A. Valencia, “tosr: Create the Tree of Science from WoS and Scopus,” J. Sci. Res., vol. 13, no. 2, pp. 459–465, Aug. 2024, doi: 10.5530/jscires.13.2.36.
[19]J. G. Saurith Moreno, D. C. Blanco Galan, S. Mindiola Garizado, and J. F. Ruiz Muñoz, “Optimization of marketing strategies employing LLMs: A systematic review,” Lúmina, vol. 25, no. 2, p. E0058, Aug. 2024, doi: 10.30554/lumina.v25.n2.5147.2024.
[20]J. G. Saurith-Moreno, D. C. Blanco-Galán, S. Mindiola-Garizado, and J. F. Ruiz-Muñoz, “Una Revisión Sistemática de Modelos Largos de Lenguaje (MLL) en Literatura Científica: Análisis Cienciométrico y Aplicación de Tree of Science,” interfaces, vol. 7, no. 1, Aug. 2024, Accessed: Nov. 15, 2024. [Online]. Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12054
[21]S. Valencia, M. Zuluaga, A. Franco, M. Osorio, and S. Betancour, “Systematic review and bibliometric analysis of the metabolome found in human breast milk from healthy and gestational diabetes mellitus mothers,” Nova, vol. 21, no. 41, Dec. 2023, doi: 10.22490/24629448.7545.
[22]G. A. Barron-Gafford et al., “Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands,” Nat. Sustain., vol. 2, no. 9, pp. 848–855, Sep. 2019, doi: 10.1038/s41893-019-0364-5.
[23]M. A. Sturchio, S. A. Kannenberg, T. A. Pinkowitz, and A. K. Knapp, “Solar arrays create novel environments that uniquely alter plant responses,” Plants People Planet, Jul. 2024, doi: 10.1002/ppp3.10554.
[24]K. Mehta, M. J. Shah, and W. Zörner, “Agri-PV (agrivoltaics) in developing countries: Advancing sustainable farming to address the water–energy–food nexus,” Energies, vol. 17, no. 17, p. 4440, Sep. 2024, doi: 10.3390/en17174440.
[25]Z. Hu, “Doomed in the agrivoltaic campaign? The case of Chinese smallholder agriculture in the deployment of agrivoltaic projects,” Energy Sustain. Dev., vol. 83, no. 101562, p. 101562, Dec. 2024, doi: 10.1016/j.esd.2024.101562.
[26]H.-W. Wang, A. Dodd, and Y. Ko, “Resolving the conflict of greens: A GIS-based and participatory least-conflict siting framework for solar energy development in southwest Taiwan,” Renew. Energy, vol. 197, pp. 879–892, Sep. 2022, doi: 10.1016/j.renene.2022.07.094.
[27]F. Jafarzadeh et al., “Flexible, Transparent, and Bifacial Perovskite Solar Cells and Modules Using the Wide-Band Gap FAPbBr Perovskite Absorber,” ACS Appl Mater Interfaces, vol. 16, no. 14, pp. 17607–17616, Apr. 2024, doi: 10.1021/acsami.4c01071.
[28]L. La Notte et al., “Hybrid and organic photovoltaics for greenhouse applications,” Appl. Energy, vol. 278, no. 115582, p. 115582, Nov. 2020, doi: 10.1016/j.apenergy.2020.115582.
[29]S. Gorjian et al., “Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology,” Renew. Sustain. Energy Rev., vol. 158, no. 112126, p. 112126, Apr. 2022, doi: 10.1016/j.rser.2022.112126.
[30]C. Toledo and A. Scognamiglio, “Agrivoltaic systems design and assessment: A critical review, and a descriptive model towards a sustainable landscape vision (three-dimensional agrivoltaic patterns),” Sustainability, vol. 13, no. 12, p. 6871, Jun. 2021, doi: 10.3390/su13126871.
[31]K. Proctor, G. Murthy, and C. Higgins, “Agrivoltaics align with Green New Deal goals while supporting investment in the US’ rural economy,” Sustainability, vol. 13, no. 1, p. 137, Dec. 2020, doi: 10.3390/su13010137.
[32]W. Lytle et al., “Conceptual design and rationale for a new agrivoltaics concept: Pasture-raised rabbits and solar farming,” J. Clean. Prod., vol. 282, no. 124476, p. 124476, Feb. 2021, doi: 10.1016/j.jclepro.2020.124476.
[33]R. A. Gonocruz, S. Uchiyama, and Y. Yoshida, “Modeling of large-scale integration of agrivoltaic systems: Impact on the Japanese power grid,” J. Clean. Prod., vol. 363, no. 132545, p. 132545, Aug. 2022, doi: 10.1016/j.jclepro.2022.132545.
[34]A. S. M. M. Hasan, P. Kesapabutr, and B. Möller, “Bangladesh’s pathways to net-zero transition: Reassessing country's solar PV potential with high-resolution GIS data,” Energy Sustain. Dev., vol. 81, no. 101511, p. 101511, Aug. 2024, doi: 10.1016/j.esd.2024.101511.
[35]M. Laub, L. Pataczek, A. Feuerbacher, S. Zikeli, and P. Högy, “Contrasting yield responses at varying levels of shade suggest different suitability of crops for dual land-use systems: a meta-analysis,” Agron. Sustain. Dev., vol. 42, no. 3, Jun. 2022, doi: 10.1007/s13593-022-00783-7.
[36]D. A. Chalkias, C. Charalampopoulos, A. K. Andreopoulou, A. Karavioti, and E. Stathatos, “Spectral engineering of semi-transparent dye-sensitized solar cells using new triphenylamine-based dyes and an iodine-free electrolyte for greenhouse-oriented applications,” J. Power Sources, vol. 496, no. 229842, p. 229842, Jun. 2021, doi: 10.1016/j.jpowsour.2021.229842.
[37]O. A. Katsikogiannis, H. Ziar, and O. Isabella, “Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach,” Appl. Energy, vol. 309, no. 118475, p. 118475, Mar. 2022, doi: 10.1016/j.apenergy.2021.118475.
[38]H. J. Lee, H. H. Park, Y. O. Kim, and Y. I. Kuk, “Crop cultivation underneath Agro-photovoltaic systems and its effects on crop growth, yield, and photosynthetic efficiency,” Agronomy (Basel), vol. 12, no. 8, p. 1842, Aug. 2022, doi: 10.3390/agronomy12081842.
[39]A. S. Pascaris, “Examining existing policy to inform a comprehensive legal framework for agrivoltaics in the U.S,” Energy Policy, vol. 159, no. 112620, p. 112620, Dec. 2021, doi: 10.1016/j.enpol.2021.112620.
[40]R. Meitzner, U. S. Schubert, and H. Hoppe, “Agrivoltaics—the perfect fit for the future of organic photovoltaics,” Adv. Energy Mater., vol. 11, no. 1, p. 2002551, Jan. 2021, doi: 10.1002/aenm.202002551.
[41]Y. Zhao, Y. Zhu, H.-W. Cheng, R. Zheng, D. Meng, and Y. Yang, “A review on semitransparent solar cells for agricultural application,” Mater. Today Energy, vol. 22, no. 100852, p. 100852, Dec. 2021, doi: 10.1016/j.mtener.2021.100852.
[42]O. Ayadi, J. T. Al-Bakri, M. E. B. Abdalla, and Q. Aburumman, “The potential of agrivoltaic systems in Jordan,” Appl. Energy, vol. 372, no. 123841, p. 123841, Oct. 2024, doi: 10.1016/j.apenergy.2024.123841.
[43]Z. Xia et al., “Balancing photovoltaic development and cropland protection: Assessing agrivoltaic potential in China,” Sustain. Prod. Consum., vol. 50, pp. 205–215, Oct. 2024, doi: 10.1016/j.spc.2024.08.001.
[44]S. Cinderby, K. A. Parkhill, S. Langford, and C. Muhoza, “Harnessing the sun for agriculture: Pathways to the successful expansion of Agrivoltaic systems in East Africa,” Energy Res. Soc. Sci., vol. 116, no. 103657, p. 103657, Oct. 2024, doi: 10.1016/j.erss.2024.103657.
[45]B. A. Johnson, Y. Arino, D. B. Magcale-Macandog, X. Liu, and M. Yamanoshita, “Potential of agrivoltaics in ASEAN considering a scenario where agroforestry expansion is also pursued,” Resour. Conserv. Recycl., vol. 209, no. 107808, p. 107808, Oct. 2024, doi: 10.1016/j.resconrec.2024.107808.
[46]Al-Amin et al., “Agrivoltaics system for sustainable agriculture and green energy in Bangladesh,” Appl. Energy, vol. 371, no. 123709, p. 123709, Oct. 2024, doi: 10.1016/j.apenergy.2024.123709.
[47]T. Petrakis, V. Thomopoulos, and A. Kavga, “Algorithmic advancements in agrivoltaics: Modeling shading effects of semi-transparent photovoltaics,” Smart Agricultural Technology, vol. 9, no. 100541, p. 100541, Dec. 2024, doi: 10.1016/j.atech.2024.100541.
[48]Y. Hu, X. Zhang, and X. Ma, “Agrivoltaics with semitransparent panels can maintain yield and quality in soybean production,” Sol. Energy, vol. 282, no. 112978, p. 112978, Nov. 2024, doi: 10.1016/j.solener.2024.112978.
[49]Z. Ghaffarpour, M. Fakhroleslam, and M. Amidpour, “Calculation of energy consumption, tomato yield, and electricity generation in a PV-integrated greenhouse with different solar panels configuration,” Renew. Energy, vol. 229, no. 120723, p. 120723, Aug. 2024, doi: 10.1016/j.renene.2024.120723.
[50]S.-N. Asa’a et al., “Assessing the light scattering properties of c-Si PV module materials for agrivoltaics: Towards more homogeneous light distribution in crop canopies,” Sol. Energy, vol. 276, no. 112690, p. 112690, Jul. 2024, doi: 10.1016/j.solener.2024.112690.