USO DE ESCORIA COMO COMPONENTE PRINCIPAL DE UN REVESTIMIENTO PROTECTOR: UNA REVISIÓN BIBLIOGRÁFICA

Authors

  • Gineth Rojas Universidad Libre
  • John Florian Universidad Libre
  • J. Ferneli Universidad Libre
  • Hector Rojas Universidad Libre
  • Jose Escobar Universidad Libre

Keywords:

Recubrimientos de escoria, pinturas industriales a base de escoria, Cerámicas de escoria, Slag splashing

Abstract

Esta revisión analiza el estado actual del uso de la escoria en la fabricación de recubrimientos, destacando su potencial como material protector. Un proceso clave en su desarrollo es el slag splashing, utilizado en la industria siderúrgica para recubrir los hornos con escoria fundida, reduciendo el desgaste y prolongando la vida útil de los equipos. Este método ha servido de base para investigaciones que buscan optimizar la composición y propiedades de la escoria en aplicaciones de recubrimiento. La escoria se emplea en recubrimientos industriales innovadores, como pinturas y recubri
mientos cerámicos, destacando por su resistencia y estabilidad térmica. Además, su uso en cementos, concretos e infraestructura vial impulsa la economía circular, reduciendo desechos industriales y fomentando materiales más sostenibles.

Downloads

Download data is not yet available.

References

[1]

World Steel Association, “December 2021

crude steel production and 2021 global

totals,” World Steel Association, 2022.

[Online]. Available: https://worldsteel.org/

media/pressreleases/2022/december

2021crudesteel-production-and-2021

globaltotals.

[2] A. Shahbaz, N. Mallick, y T. Loganathan,

“Does globalization impede environmental

quality in developed economies? An

application of the dynamic ARDL

simulations approach,” Environ Dev

Sustain, vol. 20, no. 4, pp. 1779–1801, ago.

2018. doi: 10.1007/s10668-016-9759-x.

[3] L. Sofia, M. Josef, C. Ivan, y K. Jurate,

“Leaching Behaviour of Copper Slag,

Construction and Demolition Waste and

Crushed Rock Used in a Full Scale Road

Construction,” Journal of Environmental

Management, vol. 204, pp. 695-703, 2017.

[4] J. Yi, L. Tung-Chai, S. Caijun, P. Shu Yuan,

Characteristics of Steel Slags and Their

Use in Cement and Concrete-A Review,

Resources, Conservation and Recycling

(2018), pp. 187-197.

[5] S. Mohammad, B. Kiachehr, M. Reza,

Application of alkali-activated slag concrete

in railway sleepers, Materials and Design, 69

(2015), pp. 89-95.

[6] Takahashi, Tatsuhito & Yabuta, Kazuya.

(2002). New Applications for Iron and

Steelmaking Slag. NKK Technical Review.

[7] S. Das, J. G. Lee, S. R. Cho, H. J. Song, y P.

J. Kim, “Cropping With Slag to Address Soil,

Environment, and Food Security,” Front.

Microbiol., vol. 10, p. 1320, jun. 2019. doi:

10.3389/fmicb.2019.01320.

[8] A.M. Torkashvand and S. Sedaghathoor,

“Converter slag as a liming agent in the

amelioration of acidic soils,” International

Journal of Agriculture & Biology, vol.

9, no. 5, pp. 715-720, 2007. [Online].

Available: https://www.researchgate.net/

publication/228663048_Converter_slag_

as_a_liming_agent_in_the_amelioration_

of_acid ic_soils

[9] J. Chen, Y. Xing, Y. Wang, W. Zhang, Z. Guo,

y W. Su, “Application of iron and steel slags

in mitigating greenhouse gas emissions: A

review,” Sci. Total Environ., vol. 844, p. 157041,

2022. doi: 10.1016/j.scitotenv.2022.157041.

[10] I. H. Aziz, M. M. A. B. Abdullah, M. A. A. M.

Salleh, L. Y. Ming, L. Y. Li, A. V. Sandu, P.

Vizureanu, O. Nemes, y S. N. Mahdi, “Recent

Developments in Steelmaking Industry

and Potential Alkali Activated Based Steel

Waste: A Comprehensive Review,” Materials

(Basel), vol. 15, no. 5, p. 1948, 2022. doi:

10.3390/ma15051948.

[11] C. Solanki, “Utilization of Steel Slag for

Wastewater Treatment: A Review,” en

Sustainable Building Materials and

Construction, B. Kondraivendhan, C. D.

Modhera, y V. Matsagar, Eds. Singapore:

Springer Singapore, 2022, pp. [páginas del

capítulo], doi: 10.1007/978-981-168496-8_50.

[12] M. Oge, D. Ozkan, M. B. Celik, M. S. Gok, y

A. C. Karaoglanli, “An Overview of Utilization

of Blast Furnace and Steelmaking Slag in

Various Applications,” Mater. Today Proc.,

vol. 11, no. 1, pp. 516–525, 2019. doi: 10.1016/j.

matpr.2019.01.023. [13] OEC, “slag and ash

n.e.c. in chapter 26,” [Online]. Available:

https://oec.world/en/profile/hs/otherslag

and-ash.

[14] J. Zhang, H. Matsuura, y F. Tsukihashi,

“Processes for Recycling,” 2014. doi: 10.1016/

B978-0-08-096988-6.00036-5.

[15] World Steel Association, “About Steel, how

steel is made?” [Online]. Available: https://

worldsteel.org/aboutsteel/about-steel/.

[16] N. M. Piatak, M. B. Parsons, y R. R. Seal,

“Characteristics and environmental

aspects of slag: A review,” Appl. Geochem.,

vol. 57, pp. 236–266, 2015. doi: 10.1016/j.

apgeochem.2014.04.009.

[17] ScienceDirect, “The mineralogical

composition of slags from gray iron

production,” Constr. Build. Mater. [Online].

Available: https://www.sciencedirect.com/

science/ article/pii/S0959652619309035.

[18] ScienceDirect,

“Properties

of slags

in metallurgical processes,” Minerals

Eng. [Online]. Available: https://www.

sciencedirect.com/science/ article/pii/

S0892687519301442.

[19] SpringerLink, “Non-ferrous and ferrous

slags: Environmental insights,” J. Environ.

Sci. [Online]. Available: https://link.springer.

com/article/10.1007 /s40831-018-0182-0.

[20] ScienceDirect, “Recycling and valorization

of ferrous and non-ferrous slags,” J. Sustain.

Mater. [Online]. Available: https://www.

sciencedirect.com/science/ article/pii/

S0956053X20301600.

[21] Springer, Technological advances in slag

reutilization, Advances in Environmental

Technology, 2019. [Online]. Available:

https://www.springer.com/gp/book/9783

319513734.

[22] X. Zhang, J. Chen, J. Jiang, J. Li, R. D. Tyagi, y

R. Y. Surampalli, “The potential utilization of

slag generated from iron- and steelmaking

industries: a review,” Environ. Geochem.

Health, vol. 42, no. 5, pp. 1321–1334, 2020. doi:

10.1007/s10653-019-00419-y.

[23] Universidad Nacional de Colombia, “Informe

experimental: Laboratorio Interfacultades

de Fluorescencia de Rayos X,” Sede Bogotá,

Bogotá D.C., Colombia, mayo 05 de 2022,

código [BDL-XRF-065-2022].

[24] ScienceDirect, “Copper slag valorization:

Environmental and industrial insights,”

J. Cleaner Prod. [Online]. Available:

https://www.sciencedirect.com/science/

article/abs/pii/S0892687519301442. [25]

SpringerLink, “Mineralogical and chemical

properties of non-ferrous slags,” Miner.

Process. Extr. Metall. [Online]. Available:

https://link.springer.com/article/10.1007 /

s40831-018-0182-0.

[26] ScienceDirect, “Recycling and reuse of

zinc slags in construction,” Resources,

Conservation and Recycling. [Online].

Available: https://www.sciencedirect.com/

science/ article/pii/S0959652619309035.

[27] SpringerLink, “Advances in lead smelting

slag management,” J. Sustain. Metall.

[Online]. Available: https://www.springer.

com/article/10.100 7/s40831-018-0182-0.

[28] Revista de Metalurgia, “Caracterización de

escorias de fundición de cobre,” Rev. Metal.,

vol. 55, no. 1, pp. 45–59, 2020. [Online]. Available:

https://revistademetalurgia.revistas.csic. es.

[29] ScienceDirect, “Environmental benefits

of non-ferrous slag reuse,” J. Environ.

Manage. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/

S0959652619309035.

[30] Springer, Advances in slag recycling

technologies, Advances in Sustainable

Metallurgy, 2018. [Online]. Available:

https://www.springer.com/gp/book/9783

319513734.

[31] ScienceDirect, “Characterization and reuse

of non-ferrous slags in construction,” J.

Hazard. Mater. [Online]. Available: https://

www.sciencedirect.com/science/ article/pii/

S0956053X20301600.

[32] K. Mills, Y. Su, A. Fox, Z. Li, R. Thackray, y

H. Tsai, “A Review of Slag Splashing,” ISIJ

Int., vol. 45, pp. 619–633, 2005. doi: 10.2355/

isijinternational.45.619.

[33] A. Makwana, A. Sane, X. He, y G. Buragino,

“Novel Method for Stirring BOF Melts in

Conjunction with Slag Splashing,” Air

Products, Allentown, PA, US, Informe

Técnico 335-20-001US, [En línea]. Disponible:

https://www.airproducts.com//media/files/

en/335/335-20-001-usnovel-method-for

stirring-bofmelts.pdf.

[34] B. Tang et al., “IOP Conf. Ser.: Earth Environ.

Sci.”, vol. 199, p. 042054, 2018.

[35] M. Barron, D. Medina, y I. Hilerio, “CFD

Analysis of Influence of Slag Viscosity

on the Splashing Process in an Oxygen

Steelmaking Converter,” Modeling and

Numerical Simulation of Material Science,

vol. 3, no. 3, pp. 90–93, 2013. doi: 10.4236/

mnsms.2013.33012.

[36] Z. Liu, B. Blanpain, y M. Guo, “Viscosity of

Partially Crystallized BOF Slag,” 2016. doi:

10.1007/978-3-31948093-0_33.

[37] Z. Yuan, Y. Wu, H. Zhao, H. Matsuura, y F.

Tsukihashi, “Wettability Between Molten

Slag and MgO–C Refractories for the Slag

Splashing Process,” ISIJ Int., vol. 53, p. 598,

2013. doi: 10.2355/isijinternational.53.598.

[38] H. Tsai, L. Dong, L. Li, B. Song, y W. Chen,

“Proc. Asia Steel Int. Conf.,” Chinese Society

for Metals, Beijing, 2000, p. 170.

[39] G. Chen y S. He, “Effect of MgO content in

slag on dephosphorisation in converter

steelmaking,” Ironmaking Steelmaking, vol.

42, pp. 433–438, 2014. doi: 10.1179/1743281214

Y.0000000246.

[40] S. Devi, “Optimization of Slag Chemistry for

Slag Splashing to Increase Converter Lining

Life,” Steel and Metallurgy, vol. 16, pp. 4–12,

2014.

[41] R. R. Yin et al., “The study on the interface

reaction characteristics of different binary

slag, CaO – MgO, Al2O3 – CaO, Al2O3 – MgO,

SiO2 – CaO, SiO2 - MgO,” Metalurgija, vol. 58,

no. 1-2, pp. 15–18, 2019.

[42] H. Tsai, L. Dong, L. Li, B. Song, y W. Chen,

“Proc. Asia Steel Int. Conf.,” Chinese Society

for Metals, Beijing, 2000, p. 170.

[43] H. Binici y O. Aksogan, “The use of ground

blast furnace slag, chrome slag and corn

stem ash mixture as a coating against

corrosion,” Constr. Build. Mater., vol. 25,

no. 11, pp. 4197–4201, 2011. doi: 10.1016/j.

conbuildmat.2011.04.057.

[44] Y. Kucuk et al., “Ferrochromium slag as

a

protective coating material against

oxidation for caster rolls,” Int. J. Appl. Ceram.

Technol., vol. 15, pp. 1240–1247, 2018.

doi:

10.1111/ijac.12875.

[45] P. Pati, M. Satpathy, y A. Satapathy,

“Erosion Wear Response of Linz Donawitz

Slag Coatings: Parametric Appraisal and

Prediction Using Imperialist Competitive

Algorithm and Neural Computation,” SAE

Int. J. Mater. Manuf., vol. 12, no. 2, pp. 95–106,

2019. doi: 10.4271/05-12-02-0008.

[46] A. Majumdar y S. Jana, “Glass and Glass

Ceramic Coatings:

Versatile Materials

for Industrial and Engineering Applications,”

Bulletin of Materials Science, vol. 24, no. 1, pp.

69-77, 2001. [47] T. E. Saraswati, K. Nugroho,

y M. Anwar, “An Anticorrosion Coating from

Ball-milled Wood Charcoal and Titanium

Dioxide Using a Flame Spray Method,” Int.

J. Technol., vol. 9, no. 5, pp. 983–992, 2018.

[48] T. Sowmya y S.R. Sankaranarayanan,

“Spectroscopic Analysis of Slags Preliminary

Observations,” in II International Conference

on Molten Slags Fluxes and Salts, The South

African Institute of Mining and Metallurgy,

South Africa, 2004, pp. 693–697.

[49] M. Oge, A. C. Karaoglanli, y M. B. Celik,

“Room and high temperature wear

behaviors of steelmaking slag coating and

WC reinforced composite coatings,” Surf.

Coat. Technol., vol. 399, p. 126162, 2020. d o i :

10.1016/j.surfcoat.2020.126162.

[50] P. Liu, W. Lianqi, X. Zhou, Y. Shufeng, y Y.

Chen, “A glass-based protective coating

on stainless steel for slab reheating

application,” J. Coat. Technol. Res., vol. 8, pp.

149–152, 2011. doi: 10.1007/s11998-010-9302-1.

[51] L. Aries, “Preparation of electrolytic ceramic

films on stainless steel conversion coatings,”

J. Appl. Electrochem., 1994. doi: 10.1007/

BF00249857.

[52] G. Sycheva, “Volume and Surface Nucleation

of Crystals in Glass Based on Blast

Furnace Slag,” J. Crystallization Process

and Technology, vol. 7, pp. 11– 47, 2017. doi:

10.4236/jcpt.2017.72002.

[53] G. Sycheva, “Nucleation of Crystals in Glass

Based on Blast Furnace Slag: Influence of

Chemical Differentiation on the Process of

Nucleation,” Glass Phys. Chem., vol. 45, pp.

19–28, 2019. doi: 10.1134/S1087659619010127.

[54] G. A. Sycheva y I. G. Poljakova, “Volume

Nucleation of Crystals in Glass Based on

Blast Furnace Slag,” Glass Phys. Chem., vol.

39, pp. 248–260, 2013.

[55] G. A. Sycheva y I. G. Poljakova, “Surface

Crystallization of Glass Based on Blast

Furnace Slags,” Phys. Chem. Glass, vol. 42,

pp. 512–520, 2016.

[56] M. Serekpayeva et al., “Investigation of the

Properties of Metallurgical Slags and Dust

of Electro Filters to

Obtain

Protective

Anticorrosive Coatings,” Int. J. Technol., vol.

13, p. 544, 2022. doi: 10.14716/ijtech.v13i3.4214.

[57] Z. Wang, W. Ni, Y. Jia, L. Zhu, y X. Huang,

“Crystallization behavior of glass ceramics

prepared from the mixture of nickel slag,

blast furnace slag and quartz sand,” J. Non

Cryst. Solids, vol. 356, no. 31–32, pp. 1554–1558,

2010. doi: 10.1016/j.jnoncrysol.2010.05.063.

[58] Z. Yang, Q. Lin, S. Lu, Y. He, G. Liao, y Y. Ke,

“Effect of CaO/SiO2 ratio on the preparation

and crystallization of glass-ceramics

from copper slag,” Ceram. Int., vol. 40,

no. 5, pp. 7297–7305, 2014. doi: 10.1016/j.

ceramint.2013.12.071.

[59] I. K. Mihailova, P. R. Djambazki, y D.

Mehandjiev, “The effect of the composition

on the crystallization behavior of sintered

glass-ceramics from blast furnace slag,”

Bulg. Chem. Commun., vol. 43, no. 2, pp.

293–300, 2011.

[60] S.S. Solntsev, “High-temperature Composite

Materials and Coatings on the Bases of Glass

and Ceramics for Aerospace Technics,”

Russ. J. Gen. Chem., vol. 81, no. 5, pp. 992

1000, 2007.

[61] B. T. Sofyan, C. C. Berndt, M. Stefano, y

H. J. Pardede, “WC-Co Coatings for High

Temperature Rocket Nozzle Applications:

An Applications Note,” Int. J. Technol., vol. 1,

no. 1, pp. 48–56, 2010.

[62] G. A. Sycheva, “Crystal Growth and

Nucleation in Glasses in The Lithium

Silicate System,” J. Crystallization Process

and Technology, vol. 6, pp. 29– 55, 2016.

[63] N. N. Efimov et al., “Problems of Complex

Processing of Ash and Slag Waste

and Synthesis of Silicate Materials for

Construction Purposes on Their Basis,”

Technique and Technology of Silicates, vol.

2, pp. 17–21, 2010.

[64] C. Fredericci, E. D. Zanotto, y E. C. Ziemath,

“Crystallization Mechanism and Properties

of a Blast Furnace Slag Glass,” J. Non-Cryst.

Solids, vol. 273, pp. 64–75, 2000.

[65] Y. Huang et al., “An Overview of Utilization

of Steel Slag,” Procedia Environ. Sci., vol. 16,

pp. 791–801, 2012.

[66] G. A. Sycheva, “The Nucleation of Crystals

in Glass is Based on Blast Furnace Slag.

Influence of Chemical Differentiation on

The Origin,” Phys. Chem. Glass, vol. 1, pp.

29–41, 2019.

[67] Y. C. Wang, W. B. Xin, X. G. Huo, G. P. Luo, y Z.

Fang, “Preparation and Properties of Blast

Furnace Slag Glass-Ceramics Containing

Cr₂O₃,” HighTemp. Mater. Process., vol. 38,

pp. 726– 732, 2019.

[68] G. Zhao, Y. Li, W. Dai, y D. Cang,

“Crystallization Mechanism and Properties

of High Basicity Steel SlagDerived Glass

Ceramics,” J. Ceram. Soc. Japan, vol. 124, pp.

247–250, 2016.

[69] D. Ayala Valderrama y J. Gómez Cuaspud,

“Characterization of fly ash, slag and glass

hull for the obtaining of vitreous materials,”

J. Phys. Conf. Ser., vol. 935, p. 012040, 2017.

doi: 10.1088/1742-6596/935/1/012040.

[70] D. M. Ayala Valderrama et al., “Development

and Characterization of Glass-Ceramics

from Combinations of Slag, Fly Ash, and

Glass Cullet without Adding Nucleating

Agents,” Materials (Basel), vol. 12, no. 12, p.

2032, 2019. doi: 10.3390/ma12122032.

[71] E. Montoya-Quesada, M. A. Villaquirán

Caicedo, y R. Mejía de Gutiérrez, “New

glassceramic from ternary–quaternary

mixtures based on Colombian industrial

wastes: Blast furnace slag, cupper slag, fly

ash and glass cullet,” Bol. Soc. Esp. Ceram.

Vidrio, vol. 61, no. 4, pp. 284–299, 2022. doi:

10.1016/j.bsecv.2020.11.009.

[72] L. Zhao, W. Wei, B. Hao, X. Zhang, y D. Cang,

“Synthesis of steel slag ceramics: chemical

composition and crystalline phases of raw

materials,” Int. J. Miner. Metall. Mater., vol.

22, pp. 325–333, 2015. doi: 10.1007/s12613015

1077-z.

[73] E. Karamanova, G. Avdeev, y A. Karamanov,

“Ceramics from blast furnace slag,

kaolin quartz,” J. Eur. Ceram. Soc., vol.

31, no. 6, pp. 989–998, 2011. doi: 10.1016/j.

jeurceramsoc.2011.01.006.

[74] V. A. Smolii et al., “Enamel coatings based

on slag wastes from heat and electric power

plants,” 2011. doi: 10.1134/S1087659611030126.

[75] World Population Review, “Steel Production

by Country 2022,” [Online]. Available: https://

worldpopulationreview.com/country

rankings/steel-production-bycountry.

[76] Recovery, “Slag recycling,”

[Online].

Available: https://www.recoveryworldwide.

com/en/artikel/slagrecycling_3528047.html.

[77] H. Matsuura et al., “Recycling of ironmaking

and steelmaking slags in Japan and China,”

Int. J. Miner. Metall. Mater., 2022. doi: 10.1007/

s12613-0212400-5.

[78] Nippon Slag Association, “Slag Use in

Japan,” Nippon Slag Association Report,

2021. [Online]. Available: https://www.slg.

jp/e/statistics/.

[79] J. A. Ober, “Iron and Steel Slag,” U.S.

Geological Survey, Mineral Commodity

Summaries, Jan. 2021. [Online]. Available:

https://pubs.usgs.gov/periodicals/mcs2021/

mcs2021-iron-steel-slag.pdf.

Published

2026-02-06

How to Cite

Rojas, G., Florian, J., Ferneli, J., Rojas, H., & Escobar, J. (2026). USO DE ESCORIA COMO COMPONENTE PRINCIPAL DE UN REVESTIMIENTO PROTECTOR: UNA REVISIÓN BIBLIOGRÁFICA. Ingenio Libre, 15(25). https://revistas.unilibre.edu.co/index.php/inge_libre/article/view/13523