Forecasting particulate air pollution (PM10) using a Machine Learning K-Nearest Neighbors

Authors

  • Valentina Botero Mármol Universidad Libre
  • Ingrid Dayana Sánchez Martin Universidad Libre

DOI:

https://doi.org/10.18041/2322-8415/ingelibre.2024.v13n23.11352

Keywords:

Contaminación del aire, Predicción, Material Particulado (PM10), KNN, Kennedy

Abstract

Currently, air pollution is an issue that has become increasingly relevant, since it has increased due to
urbanization, industrialization, among others; Furthermore, it is a serious problem that affects people's health and
the environment. It is caused by the emission of toxic gases caused either by industrial and/or anthropogenic
activities. Air quality has become a global concern, and measures are required to reduce emissions and improve
air quality around the world. This research made it possible to predict the values of PM10 particulate matter in
the town of Kennedy in Bogotá with the help of the K-Nearest Neighbors Machine Learning algorithm, in
addition, obtaining encouraging results regarding the generalization of the test data, demonstrating good
reliability regarding its predictions.

Downloads

Download data is not yet available.

References

A. Tella, A. L. Balogun, N. Adebisi, and S. Abdullah, “Spatial assessment of PM10 hotspots using Random Forest, K-Nearest Neighbour and Naïve Bayes,” Atmos Pollut Res, vol. 12, no. 10, p. 101202, Oct. 2021, doi: 10.1016/J.APR.2021.101202.

E. Dragomir, “Air Quality Index Prediction using K-Nearest Neighbor Technique,” 2010.

“Partículas PM10 | PRTR España.” Accessed: Nov. 04, 2023. [Online]. Available: https://prtr-es.es/ParticulasPM10,15673,11,2007.html

“Las partículas PM10 y cómo se generan.” Accessed: Nov. 04, 2023. [Online]. Available: https://www.eurofinsenvironment.es/es/particulas-pm10-ycomo-se-generan/

C. B. Gil et al., “Contaminación del aire y enfermedades respiratorias, un estudio en la localidad de Kennedy,” Sep. 2020, doi: 10.57998/BDIGITAL.HANDLE.001.3530.

“Algoritmo k-Nearest Neighbor Aprende Machine Learning.” Accessed: Nov. 04, 2023. [Online]. Available: https://www.aprendemachinelearning.c om/clasificar-con-k-nearest-neighborejemplo-en-python/

“RPubs - K Nearest Neighbors.” Accessed: Nov. 04, 2023. [Online]. Available: https://rpubs.com/awanindra01/knn

“(PDF) Forecasting Air Pollution Particulate Matter (PM 2.5 ) Using Machine Learning Regression Models.” Accessed: Nov. 04, 2023. [Online]. Available: https://www.researchgate.net/publicati on/338254310_Forecasting_Air_Pollution_ Particulate_Matter_PM_25_Using_Machin e_Learning_Regression_Models

Downloads

Published

2024-04-29