Métodos de evaluación de la patogenicidad de hongos y oomycotas sobre Aedes spp. en laboratorio

Autores/as

  • Maira Alejandra Agudelo Universidad libre
  • María Camila Rodríguez Santiago Universidad libre
  • Adalucy Alvarez Aldana Universidad libre
  • Nadya Lorena Cardona Bustos Universidad libre

Palabras clave:

hongos, oomycotas, patogenicidad, Aedes spp

Resumen

Según la Organización Mundial de la Salud (OMS), más de un billón de personas adquieren una infección por un arbovirus al año y cerca de un millón sufren consecuencias fatales. Muchas de estas enfermedades son transmitidas por mosquitos del género Aedes, convirtiéndose en problema mundial de salud debido a su gran impacto socioeconómico y a sus altas tasas de morbimortalidad. Las estrategias de control se han reducido al uso de agentes químicos, barreras físicas y control cultural para disminuir la población de vectores; sin embargo, los agentes químicos han traído consigo un problema de resistencia a los principios activos. Por eso, el control biológico se ha convertido en un excelente candidato para el control de plagas y vectores de importancia en la salud pública y el sector agrícola. La búsqueda de nuevos agentes de control dentro de estos grupos requiere una serie de estudios en laboratorio que determinen su patogenicidad, virulencia y otros aspectos de interés. En esta revisión, se realizó una búsqueda bibliográfica sobre los métodos de evaluación de la patogenicidad en laboratorio de hongos y oomycotas con potencial entomopatógeno sobre Aedes spp.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Scolari F, Casiraghi M, Bonizzoni M. Aedes spp. and their microbiota: a review. Front Microbiol. 2019;10:2036. https://doi.org/10.3389/fmicb.2019.02036

Weeratunga P, Rodrigo C, Fernando SD, et al. Control methods for Aedes albopictus and Aedes aegypti. The Cochrane Database of Systematic Reviews. 2017(8). https:// doi.org/10.1002/14651858.CD012759

Vontas J, Kioulos E, Pavlidi N, et al. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Phys. 2012;104(2):126-131. https://doi.org/10.1016/j.pestbp.2012.05.008

Scholte EJ, Knols BG, Samson RA, et al. Entomopathogenic fungi for mosquito control: a review. J Insect Sci. 2004;4(1);19. https://doi.org/10.1093/jis/4.1.19

Rueda ME, Tavares I, López CC, et al. Leptolegnia chapmanii como alternativa biológica para el control de Aedes aegypti. Biomédica. 2019;39(4):798-810. https:// doi.org/10.7705/biomedica.4598

Sani I, Ismail SI, Abdullah S, et al. A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects. 2020;11(9):619. https://doi.org/10.3390/ insects11090619

Ferron, P. Biological control of insect pests by entomogenous fungi. Annu Rev Entomol. 1978;23(1):409-442. https://doi.org/10.1146/annurev.en.23.010178.002205

Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009;139(7):1268-1278. https://doi.org/10.1016/j.cell.2009.11.042

Labaude S, Griffin CT. Transmission success of entomopathogenic nematodes used in pest control. Insects. 2018;9(2):72. ttps://doi.org/10.3390/insects9020072

Singh RK, Dhama K, Khandia R, et al. Prevention and control strategies to counter Zika virus, a special focus on intervention approaches against vector mosquitoes: current updates. Front Microbiol. 2018;9:87. https://doi.org/10.3389/fmicb.2018.00087 42 MICROCIENCIA investigación, desarrollo e innovación - Vol. 11 - 2022

Van Lenteren JC, Bolckmans K, Köhl J, et al. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. 2018;63:39-59. https:// doi.org/10.1007/s10526-017-9801-4

Gómez Ramírez H, Zapata Granja A, Torres del Águila E, et al. Manual de producción y uso de hongos entomopatógenos. Lima: Servicio Nacional de Sanidad Agraria del Perú; 2014. https://www.senasa.gob.pe/senasa/descargasarchivos/2017/09/Manualde-Producción-y-Uso-de-Hongos-Entomopatógenos.pdf

García Munguía AM. Hongos entomopatógenos (Mycota: deuteromycetes) aislados en el noroeste de México: impacto sonre la longevidad, fecundidad, fertilidad y tasas de cópula e inseminación en Aedes aegypti (diptera:Culicidae) [tesis doctoral]. [Nuevo León]: A Universidad Autónoma de Nuevo León; 2011. https://cd.dgb.uanl. mx/bitstream/handle/201504211/16304/20075.pdf?sequence=1&isAllowed=y

Litwin A, Nowak M, Różalska S. Entomopathogenic fungi: unconventional applications. Rev Environ Sci Biotechnol. 2020;19(1):23-42. https://doi.org/10.1007/ s11157-020-09525-1

Gutiérrez AC, Páramo MR, Falvo ML, et al. Leptolegnia chapmanii (Straminipila: Peronosporomycetes) as a future biorational tool for the control of Aedes aegypti (L.). Acta tropica. 2017;169:112-118. https://doi.org/10.1016/j. actatropica.2017.01.02117.01.021

Wang C, Shen D, Wang J, et al. An AGC kinase, PgAGC1 regulates virulence in the entomopathogenic oomycete Pythium guiyangense. Fungal Biology. 2019;123(1):87- 93. https://doi.org/10.1016/j.funbio.2018.11.006

Butt TM, Goettel MS. Bioassays of entomogenous fungi. En: Bioassays of entomopathogenic microbes and nematodes; 2000. p. 141-195. https://doi. org/10.1079/9780851994222.0141

Mascarin GM, Kobori NN, Quintela ED, et al. The virulence of entomopathogenic fungi against Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) and their conidial production using solid substrate fermentation. Biological Control. 2013;66(3):209- 218. https://doi.org/10.1016/j.biocontrol.2013.05.001

Cañedo V, Ames T. Manual de Laboratorio para el manejo de hongos entomopatógenos. Lima: Centro Internacional de la Papa; 2004. http://cipotato.org/wp-content/ uploads/2014/09/AN65216.pdf 43 MICROCIENCIA investigación, desarrollo e innovación - Vol. 11 - 2022

Trujillo Ruiz PA, Zapata Restrepo LN, Hoyos Sánchez RA, et al. Determinación de la dl50 y tl50 de extractos etanólicos de suspensiones celulares de Azadirachta indica sobre Spodoptera frugiperda. Rev Fac Nac Agron. 2008;61(2):4564-4575. https:// revistas.unal.edu.co/index.php/refame/article/view/24784/25335

Butt TM, Barrisever M, Drummond J, et al. Pathogenicity of the entomogenous, hyphomycete fungus, Metarhizium anisopliae against the chrysomelid beetles Psylliodes chrysocephala and Phaedon cochleariae. Biocontrol Sci Technol. 1992;2(4):327-334. https://doi.org/10.1080/09583159209355248

Bautista EJ, Mesa L, Gómez Álvarez MI. Alternativas de producción de bioplaguicidas microbianos a base de hongos: el caso de América Latina y el Caribe. Scientia Agropecuaria. 2018;9(4):585-604. http://dx.doi.org/10.17268/sci. agropecu.2018.04.15

Jaronski ST. Mass production of entomopathogenic fungi: state of the art. En: JA Morales-Ramos, M Guadalupe Rojas, DI Shapiro-Ilan, editores. Mass production of beneficial organisms invertebrates and entomopathogens. 2.ª ed. Ámsterdam: Elsevier; 2022. p. 317-357. https://doi.org/10.1016/B978-0-12-822106-8.00017-8

Kassa A, Brownbridge M, Parker BL, et al. Whey for mass production of Beauveria bassiana and Metarhizium anisopliae. Mycological Research. 2008;112(5):583-591. https://doi.org/10.1016/j.mycres.2007.12.004

Gandarilla Pacheco FL, Pérez Garza CE, de Luna Santillana E de J, et al. Evaluación de hongos entomoátógenos sobre estados larvarios de Aedes aegypti Linnaeus, 1762 (Díptera: Culicidae). Entomol Mex. 2020;7:105-111. https://www.researchgate.net/ publication/344168987

Tejeda-Reyes MA, Rodríguez-Maciel JC, Alatorre-Rosas R, et al. A new methodology to evaluate entomopathogenic fungi and formulated insecticides to control adults of Aedes aegypti (Diptera: Culicidae). Florida Entomologist. 2018;101(3):511-514. https://doi.org/10.1653/024.101.0311

Jaronski ST, Mascarin GM. Mass production of fungal entomopathogens. En Lacey LA, editor. Microbial control of insect and mite pests: from theory to practice. Ámsterdam: Elsevier; 2017. p. 141-155. https://doi.org/10.1016/B978-0-12-803527- 6.00009-3 44 MICROCIENCIA investigación, desarrollo e innovación - Vol. 11 - 2022

Bartleu MC, Jaronski ST. Mass production of entomogenous fungi for biological control of insects. Fungi Biol Control Syst. 1988;61-85. https://www.researchgate. net/publication/313675350_Mass_production_of_entomopathogenous_fungi_for_ biological_control_of_insects

Kumar S, Thakur M, Rani, A. Trichoderma: mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afr J Agric Res. 2014;9(53):3838-3852. http://doi.org/10.5897/ AJAR2014.9061

Evans HC, Elliot SL, Barreto RW. Entomopathogenic fungi and their potential for the management of Aedes aegypti (Diptera: Culicidae) in the Americas. Mem Inst Oswaldo Cruz. 2018;113:206-214. https://doi.org/10.1590/0074-02760170369

Huang YJS, Higgs S, Vanlandingham DL. Biological control strategies for mosquito vectors of arboviruses. Insects. 2017;8(1):21. https://doi.org/10.3390/insects8010021

Arredondo-García L., Méndez-Herrera A, Medina-Cortina H. Arbovirus en latinoamérica. Acta Pediatr Méx. 2016;37(2):111-131. https://www.scielo.org.mx/ pdf/apm/v37n2/2395-8235-apm-37-02-00111.pdf 33.Manjarres-Suárez A, Olivero-Verbel J. Chemical control of Aedes aegypti: a historical perspective. Rev Costarric Salud Pública. 2013;22(1):68-75. https://www.scielo.sa.cr/ pdf/rcsp/v22n1/art12v22n1.pdf

Rao BB, Harikumar PS, Jayakrishnan T, et al.. Characteristics of Aedes (Stegomyia) albopictus Skuse (Diptera: Culicidae) breeding sites. Southeast Asian J Trop Med Public Health. 2011;42(5):1077-1082. https://www.thaiscience.info/journals/Article/ TMPH/10828976.pdf

Abílio AP, Abudasse G, Kampango A, et al. Distribution and breeding sites of Aedes aegypti and Aedes albopictus in 32 urban/peri-urban districts of Mozambique: implication for assessing the risk of arbovirus outbreaks. PLoS Negl Trop Dis. 2018;12(9):1-15. https://doi.org/10.1371/journal.pntd.0006692 36. Benelli G, Jeffries CL, Walker T. Biological control of mosquito vectors: past, present, and future. Insects. 2016;7(4):52. https://doi.org/10.3390/insects7040052 45 MICROCIENCIA investigación, desarrollo e innovación - Vol. 11 - 2022

Shahid AA, Rao QA, Bakhsh A, et al. Entomopathogenic fungi as biological controllers: new insights into their virulence and pathogenicity. Arch Biol Sci. 2012;64(1):21-42. https://doi.org/10.2298/ABS1201021S

Téllez Jurado A, Cruz Ramírez MG, Mercado Flores Y, et al. Mecanismos de acción y respuesta en la relación de hongos entomopatógenos e insectos. Rev Mex Micol. 2009;30:73-80. http://www.scielo.org.mx/scielo.php?script=sci_ arttext&pid=S0187-31802009000200007

Baron, N. C., Rigobelo, E. C., & Zied, D. C. (2019). Filamentous fungi in biological control: current status and future perspectives. Chilean journal of agricultural research, 79(2), 307-315.

Leles RN, Sousa NA, Rocha LFN, et al. Pathogenicity of some hypocrealean fungi to adult Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2010;107:1271-1274. https:// doi.org/10.1007/s00436-010-1991-y

De Paula AR, Brito ES, Pereira CR, et al. Susceptibility of adult Aedes aegypti (Diptera: Culicidae) to infection by Metarhizium anisopliae and Beauveria bassiana: prospects for Dengue vector control. Biocontrol Sci Technol. 2008;18(10):1017-1025. https://doi.org/10.1080/09583150802509199

Darbro JM, Graham RI, Kay BH, et al. Evaluation of entomopathogenic fungi as potential biological control agents of the dengue mosquito, Aedes aegypti (Diptera: Culicidae). Biocontrol Sci Technol. 2011;21(9):1027-1047. https://doi.org/10.1080/0 9583157.2011.597913

Scholte EJ, Takken W, Knols BG. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop. 2007;102(3):151-158. https://doi.org/10.1016/j.actatropica.2007.04.011

Fry WE, NJ Grünwald. Introduction to Oomycetes. The Plant Health Instructor. 2010. DOI:10.1094/PHI-I-2010-1207-01

Gutiérrez AC, Rueda Páramo ME, Falvo ML, et al. Leptolegnia chapmanii (Straminipila: Peronosporomycetes) as a future biorational tool for the control of Aedes aegypti (L.). Acta Trop. 2017;169:112-118. https://doi.org/10.1016/j.actatropica.2017.01.021

López Lastra C, Steciow M, García J. Registro más austral del hongo Leptolegnia chapmanii (Oomycetes: Saprolegniales) como patógeno de larvas de mosquitos 46 MICROCIENCIA investigación, desarrollo e innovación - Vol. 11 - 2022 (Diptera: Culicidae). Rev Iberoam Micol. 1999;16:143-145. http://www. reviberoammicol.com/1999-16/143145.pdf 47.Merriam TL, Axtell RC. Evaluation of the entomogenous fungi Culicinomyces clavosporus and Lagenidium giganteum for control of the salt marsh mosquito, Aedes taeniorhynchus. Mosq News. 1982;42(4):594-602. https://www.cabdirect.org/ cabdirect/abstract/19832902934

Mccray EM, Umphlett CJ, Fay RW. Laboratory studies on a new fungal pathogen of mosquitoes. Mosq News. 1973;33(1):54-60. https://www.cabdirect.org/cabdirect/ abstract/19732902328

Misra K, Deka A, Haque A, et al. Biocontrol potentiality of entomopathogenic fungi against larvae of dengue fever vector, Aedes aegypti (Diptera: Culicidae). J Bioresour. 2015;2(1):16-22. http://jbr.rgu.ac.in/img/pdf/16 to 22 2nd.pdf

Carolino AT, Gomes SA, Pontes Teodoro TB, et al. Aedes aegypti pupae are highly susceptible to infection by Metarhizium anisopliae blastospores. J Pure Appl Microbiol. 2019;13(3):1629-34. https://doi.org/10.22207/JPAM.13.3.36

Tercero Padilla NG, Medrano Guerrero SX. Hongos entomopatógenos como bioinsecticidas para el control del vector Aedes aegypti, UNA, CNDR y POLISALUNAN-MANAGUA, octubre 2017-abril 2018. [tesis de grado]. [Managua]: Instituto Politécnico de la Salud Luis Felipe Moncada; 2019. https://repositorio.unan.edu. ni/11992/

Choi CJ, Lee JY, Woo RM, et al. An effective entomopathogenic fungus Metarhizium anisopliae for the simultaneous control of Aedes albopictus and Culex pipiens mosquito adults. J Asia Pac Entomol 2020;23(2):585-590. https://doi.org/10.1016/j. aspen.2020.04.007

Hajek AE, Papierok B, Eilenberg J. Methods for study of the Entomophthorales. En: Lacey LA, editor. Manual of techniques in invertebrate pathology. 2.ª ed. Ámsterdam: Elsevier; 2012. p. 302-309. https://doi.org/10.1016/B978-0-12-386899-2.00009-9

Táborsky V. General introduction to process of microbial pesticide. En: Small-scale processing of microbial pesticides. Roma: Food and Agriculture Organization of the United Nations; 1992. http://www.fao.org/3/t0533E/t0533e00.htm#con 47 MICROCIENCIA investigación, desarrollo e innovación - Vol. 11 - 2022

Dar SA, Rather BA, Kandoo AA. Insect pest management by entomopathogenic fungi. J Entomol Zool Stud. 2017;5(3):1185-90. https://www.entomoljournal.com/ archives/2017/vol5issue3/PartQ/5-3-151-179.pdf

Lacey LA, Solter LF. Initial handling and diagnosis of diseased invertebrates. En: Lacey LA, editor. Manual of techniques in invertebrate pathology. 2.ª ed. Ámsterdam: Elsevier; 2012. p. 1-13. https://doi.org/10.1016/B978-0-12-386899-2.00001-4

Santos K, Montalva C, Rueda Páramo ME, , et al. Atividade de fungos isolados de Dípteros coletados em Goiás e Tocantins em Aedes aegypti e Musca domestica. Rev Patol Trop. 2016;45(1):1-115. https://www.researchgate.net/publication/309548651_Atividade_de_fungos_isolados_de_Dipteros_coletados_em_Goias_e_Tocantins_em_Aedes_aegypti_e_Musca_domestica

Inglis GD, Enkerli J, Goettel MS. Laboratory thecniques used for entomopathogenic fungi: Hypocreales. En: Lacey LA, editor. Manual of techniques in invertebrate pathology. 2.ª ed. Ámsterdam: Elsevier; 2012. p. 189-253. https://doi.org/10.1016/ B978-0-12-386899-2.00007-5

Das Chagas Bernardo C, Pereira Junior RA, Luz C, et al. Differential susceptibility of blastospores and aerial conidia of entomopathogenic fungi to heat and UV-B stresses. Fungal Biol. 2020;124(8):714-22. https://doi.org/10.1016/j.funbio.2020.04.003

Hajek AE, Steinkraus DC, Castrillo LA. Sleeping beauties: horizontal transmission via resting spores of species in the Entomophthoromycotina. Insects. 2018;9(3). https:// doi.org/10.3390/insects9030102

Sánchez Pena SR. In vitro production of hyphae of the grasshopper pathogen Entomophaga grylli (Zygomycota: Entomophthorales): Potential for production of conidia. Florida Entomol. 2005;88(3):332-334. https://doi.org/10.1653/0015- 4040(2005)088[0332:IVPOHO]2.0.CO;2 62.Pelizza S, Scorsetti A, Lastra C, et al. Production of oogonia and oospores of Leptolegnia chapmanii Seymour (Straminipila: Peronosporomycetes) in Aedes aegypti (L.) larvae at different temperatures. Mycopathologia. 2010;169(1):71-74. https://doi.org/10.1007/s11046-009-9224-6

Hussain A, Tian MY, He YR, et al. In vitro and in vivo culturing impacts on the virulence characteristics of serially passed entomopathogenic fungi. J Food, Agric Environ. 2010;8(3-4):481-487. https://doi.org/10.1234/4.2010.3215 48 MICROCIENCIA investigación, desarrollo e innovación - Vol. 11 - 2022

Shah FA, Wang CS, Butt TM. Nutrition influences growth and virulence of the insectpathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett. 2005;251(2):259- 266. https://doi.org/10.1016/j.femsle.2005.08.010

Paula AR, Ribeiro A, Alves Lemos FJ, et al. Neem oil increases the persistence of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae. Parasites and Vectors. 2019;163(2019):1-9. https://doi. org/10.1186/s13071-019-3415-x

Ayala-Zermeño MA, Gallou A, Berlanga-Padilla AM, et al. Viability, purity, and genetic stability of entomopathogenic fungi species using different preservation methods. Fungal Biol. 2017;121(11):920-928. https://doi.org/10.1016/j.funbio.2017.07.007

Schneider JR, Morrison AC, Astete H, et al. Adult size and distribution of Aedes aegypti (Diptera: Culicidae) Associated with larval habitats in Iquitos, Peru. J Med Entomol. 2004;41(4):634-642. https://doi.org/10.1603/0022-2585-41.4.634

Accoti A, Engdahl CS, Dimopoulos G. Discovery of novel entomopathogenic fungi for mosquito-borne disease control. Front Fungal Biol. 2021;2. https://doi.org/10.3389/ ffunb.2021.637234

Pratibha J, S P. Influence of temperature and humidity on conidial germination and colony growth of entomopathogenic fungi. J Entomol Zool Stud. 2021;9(4):201-206. https://www.entomoljournal.com/archives/2021/vol9issue4/PartC/9-4-7-408.pdf

Zuharah WF, Rohaiyu MR, Azmi WA, et al. Pathogenicity of entomopathogenic fungus, Metarhizium anisopliae MET-GRA4 isolate on dengue vectors, Aedes albopictus and Aedes aegypti mosquito larvae (Diptera: Culicidae). J Asia Pac Entomol. 2021;24(2):24-29. https://doi.org/10.1016/j.aspen.2021.04.008

Pascual García AA. Formulación con hongos entomopaógenos para el control de plagas. 2015. https://patentimages.storage.googleapis.com/18/b1/f8/2b8ffcbd71cea7/ WO2015080545A1.pdf

Grace J, Jaronski S. Solid substrate fermentation of Beauveria bassiana and Metarhizium anisopliae. Sidney: USDA-ARS Northern Plains Agricultural Research Laboratory; 2005. https://www.ars.usda.gov/ARSUserFiles/30320505/The Art of Fermentation 4-06.pdf

Descargas

Publicado

2024-02-29

Número

Sección

Artículos