Exploratory study of technologies and tools for healthcare through the use of connected medical devices in the context of intelligent systems in clinical environments
Keywords:
Interconnected medical sensors, Symptom prediction, Diagnosis, Artificial intelligence, Health data, IoT, Big Data, Data analysisAbstract
In a world where digitization and interconnectedness are already ubiquitous, medical sensors and devices have emerged as crucial elements in the evolution of healthcare. This document emphasizes the fundamental role of these devices in current medical care, exploring how the data generated by them can revolutionize disease diagnosis. Through the interconnection of medical sensors and devices, a future is envisioned in which the symptoms of patients can be predicted and managed more effectively.
Downloads
References
R. (2017). Solanas, A., Weber, J. H., Bener, A. B., Van Der Linden, F., & Capilla, “Recent advances in healthcare software: Toward context-aware and smart solutions.,” IEEE Softw., vol. 34(6), pp. 36–40, 2017, [Online]. Available: https://repositori.urv.cat/estatic/PC0011/es_imarina9285556.html
E. Batista, M. Angels Moncusi, P. López-Aguilar, A. Martínez-Ballesté, and A. Solanas, “Sensors for context-aware smart healthcare: A security perspective,” Sensors, vol. 21, no. 20, 2021, doi: 10.3390/s21206886.
T. Ivașcu and V. Negru, “Activity-aware vital signmonitoring based on a multi-agent architecture,” Sensors, vol. 21, no. 12, 2021, doi: 10.3390/s21124181.
A. Haleem, M. Javaid, R. Pratap Singh, and R. Suman, “Medical 4.0 technologies for healthcare: Features, capabilities, and applications,” Internet Things Cyber-Physical Syst., vol. 2, pp. 12–30, 2022, doi: https://doi.org/10.1016/j.iotcps.2022.04.001.
V. Sharmila Bhargavi and S. Pavai Madheswari, “IoT enabled healthcare system for predicting the diseases using feature optimization, decision tree, neural network, and fuzzy temporal rules,” Concurr. Comput. Pract. Exp., vol. 34, no. 27, 2022, doi: 10.1002/cpe.7327.
S. Venkatraman, S. Parvin, W. Mansoor, and A. Gawanmeh, “Big data analytics and internet of things for personalised healthcare: opportunities and challenges,” Int. J. Electr. Comput. Eng., vol. 13, no. 4, pp. 4306–4316, 2023, doi: 10.11591/ijece.v13i4.pp4306-4316.
S. Mistry, L. Wang, Y. Islam, and F. A. J. Osei, “A Comprehensive Study on Healthcare Datasets Using AI Techniques,” Electron., vol. 11, no. 19, 2022, doi: 10.3390/electronics11193146.
C. E. Aitzaouiat, A. Latif, A. Benslimane, and H.-H. Chin, “Machine Learning Based Prediction and Modeling in Healthcare Secured Internet of Things,” Mob. Networks Appl., vol. 27, no. 1, pp. 84–95, 2022, doi: 10.1007/s11036-020-01711-3.
H. Keserwani, S. V Kakade, S. K. Sharma, M. Manchanda, and G. F. Nama, “Real-Time Analysis of Wearable Sensor Data Using IoT and Machine Learning in Healthcare,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 7s, pp. 85–90, 2023, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164032637&partnerID=40&md5=508583757c28c6968b311fe9f20b07a0
S. C. Dhanvijay, M. M., & Patil, “Internet of Things: A survey of enabling technologies in healthcare and its applications,” Comput. Networks, vol. 153, pp. 113–131, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1389128619302695
H. Verma, N. Chauhan, and L. K. Awasthi, “A Comprehensive review of ‘Internet of Healthcare Things’: Networking aspects, technologies, services, applications, challenges, and security concerns,” Comput. Sci. Rev., vol. 50, p. 100591, 2023, doi: https://doi.org/10.1016/j.cosrev.2023.100591.
E. Mbunge, B. Muchemwa, S. Jiyane, and J. Batani, “Sensors and healthcare 5.0: transformative shift in virtual care through emerging digital health technologies,” Glob. Heal. J., vol. 5, no. 4, pp. 169–177, 2021, doi: https://doi.org/10.1016/j.glohj.2021.11.008.
E. Raso, G. M. Bianco, L. Bracciale, G. Marrocco, C. Occhiuzzi, and P. Loreti, “Privacy-Aware Architectures for NFC and RFID Sensors in Healthcare Applications,” Sensors, vol. 22, no. 24, 2022, doi: 10.3390/s22249692.
F. Piccialli, F. Giampaolo, E. Prezioso, D. Camacho, and G. Acampora, “Artificial intelligence and healthcare: Forecasting of medical bookings through multi-source time-series fusion,” Inf. Fusion, vol. 74, pp. 1–16, 2021, doi: 10.1016/j.inffus.2021.03.004.
A. Shrivastava, M. Chakkaravarthy, and M. A. Shah, “Health Monitoring based Cognitive IoT using Fast Machine Learning Technique,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 6s, pp. 720–729, 2023, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167993065&partnerID=40&md5=a42aea133aae7e0ec6ccf697f90e7cf8
D. de Oliveira Cruz, C. Chechetti, S. M. D. Brucki, L. T. Takada, and F. L. S. Nunes, “A comprehensive systematic review on mobile applications to support dementia patients,” Pervasive Mob. Comput., vol. 90, p. 101757, 2023, doi: https://doi.org/10.1016/j.pmcj.2023.101757.
C. Comito and C. Pizzuti, “Artificial intelligence for forecasting and diagnosing COVID-19 pandemic: A focused review,” Artif. Intell. Med., vol. 128, p. 102286, 2022, doi: https://doi.org/10.1016/j.artmed.2022.102286.
S. A. Wagan, J. Koo, I. F. Siddiqui, M. Attique, D. R. Shin, and N. M. F. Qureshi, “Internet of medical things and trending converged technologies: A comprehensive review on real-time applications,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 10, Part B, pp. 9228–9251, 2022, doi: https://doi.org/10.1016/j.jksuci.2022.09.005.
D. Nahavandi, R. Alizadehsani, A. Khosravi, and U. R. Acharya, “Application of artificial intelligence in wearable devices: Opportunities and challenges,” Comput. Methods Programs Biomed., vol. 213, p. 106541, 2022, doi: https://doi.org/10.1016/j.cmpb.2021.106541.
M. J. Baucas, P. Spachos, and S. Gregori, “Internet-of-Things Devices and Assistive Technologies for Health Care: Applications, Challenges, and Opportunities,” IEEE Signal Process. Mag., vol. 38, no. 4, pp. 65–77, 2021, doi: 10.1109/MSP.2021.3075929.
J. Liang, Y. Song, Y. Sun, Y. Ji, L. Pan, and Y. Shi, “Research progress of human health IoT based on wearable and implantable techniques,” Chinese J. Internet Things, vol. 7, no. 2, pp. 26–34, 2023, doi: 10.11959/j.issn.2096-3750.2023.00343.
I. N. Muhsen et al., “Current status and future perspectives on the Internet of Things in oncology,” Hematol. Oncol. Stem Cell Ther., 2021, doi: https://doi.org/10.1016/j.hemonc.2021.09.003.
J. Zhang et al., “Intelligent speech technologies for transcription, disease diagnosis, and medical equipment interactive control in smart hospitals: A review,” Comput. Biol. Med., vol. 153, p. 106517, 2023, doi: https://doi.org/10.1016/j.compbiomed.2022.106517.
A. Momenzadeh, A. Shamsa, and J. G. Meyer, “Bias or biology? Importance of model interpretation in machine learning studies from electronic health records,” JAMIA Open, vol. 5, no. 3, 2022, doi: 10.1093/jamiaopen/ooac063.
O. H. Salman, Z. Taha, M. Q. Alsabah, Y. S. Hussein, A. S. Mohammed, and M. Aal-Nouman, “A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work,” Comput. Methods Programs Biomed., vol. 209, p. 106357, 2021, doi: https://doi.org/10.1016/j.cmpb.2021.106357.
T. Saheb, T. Saheb, and D. O. Carpenter, “Mapping research strands of ethics of artificial intelligence in healthcare: A bibliometric and content analysis,” Comput. Biol. Med., vol. 135, p. 104660, 2021, doi: https://doi.org/10.1016/j.compbiomed.2021.104660.
S. Harrer, “Attention is not all you need: the complicated case of ethically using large language models in healthcare and medicine,” eBioMedicine, vol. 90, p. 104512, 2023, doi: https://doi.org/10.1016/j.ebiom.2023.104512.
K. Das et al., “Informatics on a social view and need of ethical interventions for wellbeing via interference of artificial intelligence,” Telemat. Informatics Reports, vol. 11, p. 100065, 2023, doi: https://doi.org/10.1016/j.teler.2023.100065.
M. Haghi Kashani, M. Madanipour, M. Nikravan, P. Asghari, and E. Mahdipour, “A systematic review of IoT in healthcare: Applications, techniques, and trends,” J. Netw. Comput. Appl., vol. 192, p. 103164, 2021, doi: https://doi.org/10.1016/j.jnca.2021.103164.
H. Kim, S. Lee, H. Kwon, and E. Kim, “Design and Implementation of a Personal Health Record Platform Based on Patient-consent Blockchain Technology,” KSII Trans. Internet Inf. Syst., vol. 15, no. 12, pp. 4400–4419, 2021, doi: 10.3837/TIIS.2021.12.008.
J.-S. Lee, C.-J. Chew, J.-Y. Liu, Y.-C. Chen, and K.-Y. Tsai, “Medical blockchain: Data sharing and privacy preserving of EHR based on smart contract,” J. Inf. Secur. Appl., vol. 65, 2022, doi: 10.1016/j.jisa.2022.103117.
A. Haleem, M. Javaid, R. P. Singh, R. Suman, and S. Rab, “Blockchain technology applications in healthcare: An overview,” Int. J. Intell. Networks, vol. 2, pp. 130–139, 2021, doi: https://doi.org/10.1016/j.ijin.2021.09.005.
Q. Mamun, “Blockchain technology in the future of healthcare,” Smart Heal., vol. 23, p. 100223, 2022, doi: https://doi.org/10.1016/j.smhl.2021.100223.
S. Esposito, S. Orlandi, S. Magnacca, A. De Curtis, A. Gialluisi, and L. Iacoviello, “Clinical Network for Big Data and Personalized Health: Study Protocol and Preliminary Results,” Int. J. Environ. Res. Public Health, vol. 19, no. 11, 2022, doi: 10.3390/ijerph19116365.
J. Gómez, S. Castaño, T. Mercado, A. Fernández, and J. García. Sistema de Internet de las cosas (IoT) para el monitoreo de cultivos protegidos. Ingeniería e Innovación, 5 (1), 24-31.,2017.
J. Gómez, B. Oviedo and Zhuma. Patient monitoring system based on internet of things. Procedia Computer Science, 83, 90-97, 2016.
V. Elamaran, N. Arunkumar, G. Babu,V. Balaji, J. Gomez, C. Figueroa, and G. Ramirez-González. Exploring DNS, HTTP, and ICMP response time computations on brain signal/image databases using a packet sniffer tool. IEEE Access, 6, 59672-59678, 2018.