Estudio exploratorio de tecnologías y herramientas para el cuidado de la salud por medio del uso de dispositivos médicos conectados en el contexto de sistemas inteligentes en entornos clínicos
Palabras clave:
Sensores médicos interconectados, Predicción de síntomas, Diagnóstico, Inteligencia artificial, Datos de salud, IoT, Big Data, Data análisisResumen
En mundo donde la digitalización y la interconexión son ya algo omnipresente, los sensores y dispositivos médicos han emergido como elementos cruciales para la evolución de la atención en salud. Este documento se hace énfasis en el papel fundamental de estos dispositivos en la atención médica actual, explorando cómo los datos generados por ellos pueden revolucionar el diagnóstico de enfermedades. A través de la interconexión de sensores y dispositivos médicos, se vislumbra un futuro en el que se puedan predecir y gestionar los síntomas de los pacientes de manera más eficaz.
Descargas
Referencias
R. (2017). Solanas, A., Weber, J. H., Bener, A. B., Van Der Linden, F., & Capilla, “Recent advances in healthcare software: Toward context-aware and smart solutions.,” IEEE Softw., vol. 34(6), pp. 36–40, 2017, [Online]. Available: https://repositori.urv.cat/estatic/PC0011/es_imarina9285556.html
E. Batista, M. Angels Moncusi, P. López-Aguilar, A. Martínez-Ballesté, and A. Solanas, “Sensors for context-aware smart healthcare: A security perspective,” Sensors, vol. 21, no. 20, 2021, doi: 10.3390/s21206886.
T. Ivașcu and V. Negru, “Activity-aware vital signmonitoring based on a multi-agent architecture,” Sensors, vol. 21, no. 12, 2021, doi: 10.3390/s21124181.
A. Haleem, M. Javaid, R. Pratap Singh, and R. Suman, “Medical 4.0 technologies for healthcare: Features, capabilities, and applications,” Internet Things Cyber-Physical Syst., vol. 2, pp. 12–30, 2022, doi: https://doi.org/10.1016/j.iotcps.2022.04.001.
V. Sharmila Bhargavi and S. Pavai Madheswari, “IoT enabled healthcare system for predicting the diseases using feature optimization, decision tree, neural network, and fuzzy temporal rules,” Concurr. Comput. Pract. Exp., vol. 34, no. 27, 2022, doi: 10.1002/cpe.7327.
S. Venkatraman, S. Parvin, W. Mansoor, and A. Gawanmeh, “Big data analytics and internet of things for personalised healthcare: opportunities and challenges,” Int. J. Electr. Comput. Eng., vol. 13, no. 4, pp. 4306–4316, 2023, doi: 10.11591/ijece.v13i4.pp4306-4316.
S. Mistry, L. Wang, Y. Islam, and F. A. J. Osei, “A Comprehensive Study on Healthcare Datasets Using AI Techniques,” Electron., vol. 11, no. 19, 2022, doi: 10.3390/electronics11193146.
C. E. Aitzaouiat, A. Latif, A. Benslimane, and H.-H. Chin, “Machine Learning Based Prediction and Modeling in Healthcare Secured Internet of Things,” Mob. Networks Appl., vol. 27, no. 1, pp. 84–95, 2022, doi: 10.1007/s11036-020-01711-3.
H. Keserwani, S. V Kakade, S. K. Sharma, M. Manchanda, and G. F. Nama, “Real-Time Analysis of Wearable Sensor Data Using IoT and Machine Learning in Healthcare,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 7s, pp. 85–90, 2023, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164032637&partnerID=40&md5=508583757c28c6968b311fe9f20b07a0
S. C. Dhanvijay, M. M., & Patil, “Internet of Things: A survey of enabling technologies in healthcare and its applications,” Comput. Networks, vol. 153, pp. 113–131, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1389128619302695
H. Verma, N. Chauhan, and L. K. Awasthi, “A Comprehensive review of ‘Internet of Healthcare Things’: Networking aspects, technologies, services, applications, challenges, and security concerns,” Comput. Sci. Rev., vol. 50, p. 100591, 2023, doi: https://doi.org/10.1016/j.cosrev.2023.100591.
E. Mbunge, B. Muchemwa, S. Jiyane, and J. Batani, “Sensors and healthcare 5.0: transformative shift in virtual care through emerging digital health technologies,” Glob. Heal. J., vol. 5, no. 4, pp. 169–177, 2021, doi: https://doi.org/10.1016/j.glohj.2021.11.008.
E. Raso, G. M. Bianco, L. Bracciale, G. Marrocco, C. Occhiuzzi, and P. Loreti, “Privacy-Aware Architectures for NFC and RFID Sensors in Healthcare Applications,” Sensors, vol. 22, no. 24, 2022, doi: 10.3390/s22249692.
F. Piccialli, F. Giampaolo, E. Prezioso, D. Camacho, and G. Acampora, “Artificial intelligence and healthcare: Forecasting of medical bookings through multi-source time-series fusion,” Inf. Fusion, vol. 74, pp. 1–16, 2021, doi: 10.1016/j.inffus.2021.03.004.
A. Shrivastava, M. Chakkaravarthy, and M. A. Shah, “Health Monitoring based Cognitive IoT using Fast Machine Learning Technique,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 6s, pp. 720–729, 2023, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167993065&partnerID=40&md5=a42aea133aae7e0ec6ccf697f90e7cf8
D. de Oliveira Cruz, C. Chechetti, S. M. D. Brucki, L. T. Takada, and F. L. S. Nunes, “A comprehensive systematic review on mobile applications to support dementia patients,” Pervasive Mob. Comput., vol. 90, p. 101757, 2023, doi: https://doi.org/10.1016/j.pmcj.2023.101757.
C. Comito and C. Pizzuti, “Artificial intelligence for forecasting and diagnosing COVID-19 pandemic: A focused review,” Artif. Intell. Med., vol. 128, p. 102286, 2022, doi: https://doi.org/10.1016/j.artmed.2022.102286.
S. A. Wagan, J. Koo, I. F. Siddiqui, M. Attique, D. R. Shin, and N. M. F. Qureshi, “Internet of medical things and trending converged technologies: A comprehensive review on real-time applications,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 10, Part B, pp. 9228–9251, 2022, doi: https://doi.org/10.1016/j.jksuci.2022.09.005.
D. Nahavandi, R. Alizadehsani, A. Khosravi, and U. R. Acharya, “Application of artificial intelligence in wearable devices: Opportunities and challenges,” Comput. Methods Programs Biomed., vol. 213, p. 106541, 2022, doi: https://doi.org/10.1016/j.cmpb.2021.106541.
M. J. Baucas, P. Spachos, and S. Gregori, “Internet-of-Things Devices and Assistive Technologies for Health Care: Applications, Challenges, and Opportunities,” IEEE Signal Process. Mag., vol. 38, no. 4, pp. 65–77, 2021, doi: 10.1109/MSP.2021.3075929.
J. Liang, Y. Song, Y. Sun, Y. Ji, L. Pan, and Y. Shi, “Research progress of human health IoT based on wearable and implantable techniques,” Chinese J. Internet Things, vol. 7, no. 2, pp. 26–34, 2023, doi: 10.11959/j.issn.2096-3750.2023.00343.
I. N. Muhsen et al., “Current status and future perspectives on the Internet of Things in oncology,” Hematol. Oncol. Stem Cell Ther., 2021, doi: https://doi.org/10.1016/j.hemonc.2021.09.003.
J. Zhang et al., “Intelligent speech technologies for transcription, disease diagnosis, and medical equipment interactive control in smart hospitals: A review,” Comput. Biol. Med., vol. 153, p. 106517, 2023, doi: https://doi.org/10.1016/j.compbiomed.2022.106517.
A. Momenzadeh, A. Shamsa, and J. G. Meyer, “Bias or biology? Importance of model interpretation in machine learning studies from electronic health records,” JAMIA Open, vol. 5, no. 3, 2022, doi: 10.1093/jamiaopen/ooac063.
O. H. Salman, Z. Taha, M. Q. Alsabah, Y. S. Hussein, A. S. Mohammed, and M. Aal-Nouman, “A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work,” Comput. Methods Programs Biomed., vol. 209, p. 106357, 2021, doi: https://doi.org/10.1016/j.cmpb.2021.106357.
T. Saheb, T. Saheb, and D. O. Carpenter, “Mapping research strands of ethics of artificial intelligence in healthcare: A bibliometric and content analysis,” Comput. Biol. Med., vol. 135, p. 104660, 2021, doi: https://doi.org/10.1016/j.compbiomed.2021.104660.
S. Harrer, “Attention is not all you need: the complicated case of ethically using large language models in healthcare and medicine,” eBioMedicine, vol. 90, p. 104512, 2023, doi: https://doi.org/10.1016/j.ebiom.2023.104512.
K. Das et al., “Informatics on a social view and need of ethical interventions for wellbeing via interference of artificial intelligence,” Telemat. Informatics Reports, vol. 11, p. 100065, 2023, doi: https://doi.org/10.1016/j.teler.2023.100065.
M. Haghi Kashani, M. Madanipour, M. Nikravan, P. Asghari, and E. Mahdipour, “A systematic review of IoT in healthcare: Applications, techniques, and trends,” J. Netw. Comput. Appl., vol. 192, p. 103164, 2021, doi: https://doi.org/10.1016/j.jnca.2021.103164.
H. Kim, S. Lee, H. Kwon, and E. Kim, “Design and Implementation of a Personal Health Record Platform Based on Patient-consent Blockchain Technology,” KSII Trans. Internet Inf. Syst., vol. 15, no. 12, pp. 4400–4419, 2021, doi: 10.3837/TIIS.2021.12.008.
J.-S. Lee, C.-J. Chew, J.-Y. Liu, Y.-C. Chen, and K.-Y. Tsai, “Medical blockchain: Data sharing and privacy preserving of EHR based on smart contract,” J. Inf. Secur. Appl., vol. 65, 2022, doi: 10.1016/j.jisa.2022.103117.
A. Haleem, M. Javaid, R. P. Singh, R. Suman, and S. Rab, “Blockchain technology applications in healthcare: An overview,” Int. J. Intell. Networks, vol. 2, pp. 130–139, 2021, doi: https://doi.org/10.1016/j.ijin.2021.09.005.
Q. Mamun, “Blockchain technology in the future of healthcare,” Smart Heal., vol. 23, p. 100223, 2022, doi: https://doi.org/10.1016/j.smhl.2021.100223.
S. Esposito, S. Orlandi, S. Magnacca, A. De Curtis, A. Gialluisi, and L. Iacoviello, “Clinical Network for Big Data and Personalized Health: Study Protocol and Preliminary Results,” Int. J. Environ. Res. Public Health, vol. 19, no. 11, 2022, doi: 10.3390/ijerph19116365.
J. Gómez, S. Castaño, T. Mercado, A. Fernández, and J. García. Sistema de Internet de las cosas (IoT) para el monitoreo de cultivos protegidos. Ingeniería e Innovación, 5 (1), 24-31.,2017.
J. Gómez, B. Oviedo and Zhuma. Patient monitoring system based on internet of things. Procedia Computer Science, 83, 90-97, 2016.
V. Elamaran, N. Arunkumar, G. Babu,V. Balaji, J. Gomez, C. Figueroa, and G. Ramirez-González. Exploring DNS, HTTP, and ICMP response time computations on brain signal/image databases using a packet sniffer tool. IEEE Access, 6, 59672-59678, 2018.