Agricultura en ambientes controlados, técnicas de control y su relación con la extracción de aceites esenciales: un análisis cienciométrico
DOI:
https://doi.org/10.18041/2619-4465/interfaces.1.13389Palabras clave:
Agricultura en ambientes controlados, Aceites esenciales, Análisis cienciométrico, Técnicas de control agrícola, Agricultura de precisión, Monitoreo ambiental, Agricultura verticalResumen
La agricultura en ambientes controlados (CEA) ha emergido como una estrategia fundamental para optimizar la producción agrícola mediante la gestión precisa de variables ambientales como la temperatura, la humedad, la luz y los nutrientes. Esta investigación presenta un análisis cienciométrico de la evolución científica en CEA durante el período 2004-2025, con especial atención a su aplicación en cultivos especializados para la producción de aceites esenciales. A través de una búsqueda sistemática en las bases de datos Web of Science y Scopus, se identificaron y analizaron 862 registros únicos siguiendo la metodología PRISMA. Los resultados revelan un crecimiento exponencial en la investigación a partir de 2015, con tres períodos distintos: crecimiento inicial (2004-2009, 23.27%), decrecimiento (2010-2014, -15.91%) y expansión acelerada (2015-2025, 50.41%). Los Estados Unidos lideran la producción científica con 339 publicaciones (40.5%) y 5,998 citaciones, seguidos por Canadá, India, Alemania y China. Las tecnologías predominantes incluyen sistemas de iluminación LED, sensores IoT, monitoreo automatizado y agricultura vertical. La revista Frontiers in Plant Science se posiciona como la principal plataforma de difusión, con 41 artículos y un índice h de 246. El análisis de colaboración internacional evidencia redes consolidadas entre países europeos, asiáticos y americanos, lo que facilita la transferencia de tecnología. Aunque la relación específica entre CEA y aceites esenciales aún permanece poco explorada, la consolidación de tecnologías de control ambiental y la creciente demanda de productos de alto valor posicionan a este campo como estratégico para abordar los desafíos globales de seguridad alimentaria, cambio climático y sostenibilidad. Se concluye que la CEA representa un área de investigación con gran proyección, sugiriendo que futuras investigaciones deberían enfocarse en la sinergia entre los sistemas controlados y la producción de metabolitos secundarios, aceites esenciales y compuestos bioactivos.
Descargas
Referencias
He realizado la limpieza de las referencias bibliográficas proporcionadas, eliminando las entidades HTML (&, ', etc.) y los espacios innecesarios. Se presentan en formato de lista para facilitar su lectura:
[1] M. S. Dennison, P. S. Kumar, F. Wamyil, M. A. Meji, and T. Ganapathy, "The role of automation and robotics in transforming hydroponics and aquaponics to large scale," Discov. Sustain., vol. 6, no. 1, Feb. 2025, doi: 10.1007/s43621-025-00908-4. Available: http://dx.doi.org/10.1007/s43621-025-00908-4
[2] T. Schwend et al., "Test of a PAR sensor-based, dynamic regulation of LED lighting in greenhouse cultivation of Helianthus annuus," Eur. J. Hortic. Sci., vol. 81, no. 3, pp. 152–156, Jun. 2016, doi: 10.17660/ejhs.2016/81.3.3. Available: http://dx.doi.org/10.17660/ejhs.2016/81.3.3
[3] H. Dou, G. Niu, M. Gu, and J. Masabni, "Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments," Horticulturae, vol. 3, no. 2, p. 36, Jun. 2017, doi: 10.3390/horticulturae3020036. Available: http://dx.doi.org/10.3390/horticulturae3020036
[4] I. A. Paponov and M. Paponov, "Supplemental lighting in controlled environment agriculture: Enhancing photosynthesis, growth, and sink activity," CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour., Feb. 2025, doi: 10.1079/cabireviews.2025.0008. Available: http://dx.doi.org/10.1079/cabireviews.2025.0008
[5] C. Kang, X. Mu, A. N. Seffrin, F. Di Gioia, and L. He, "A recursive segmentation model for bok choy growth monitoring with Internet of Things (IoT) technology in controlled environment agriculture," Computers and Electronics in Agriculture, vol. 230, p. 109866, Mar. 2025, doi: 10.1016/j.compag.2024.109866. Available: http://dx.doi.org/10.1016/j.compag.2024.109866. [Accessed: Jul. 08, 2025]
[6] G. Samuolienė, K. Laužikė, I. Gudžinskaitė, A. Pukalskas, and A. Viršilė, "Nutritionally sensitive precision agriculture: biodiversity and high-value production," Acta Hortic., no. 1423, pp. 227–234, Mar. 2025, doi: 10.17660/actahortic.2025.1423.30. Available: http://dx.doi.org/10.17660/actahortic.2025.1423.30
[7] J. M. Q. Luz et al., "Agronomic production and essential yield of Lavandula dentata L. in different systems and fertilization," Acta Hortic., no. 1125, pp. 113–120, Oct. 2016, doi: 10.17660/actahortic.2016.1125.14. Available: http://dx.doi.org/10.17660/actahortic.2016.1125.14
[8] C. Coman, E. Coman, V. Gherheș, A. Bucs, and D. Rad, "Application of Remote Sensing and Machine Learning in sustainable agriculture," Sustainability, vol. 17, no. 12, p. 5601, Jun. 2025, doi: 10.3390/su17125601. Available: http://dx.doi.org/10.3390/su17125601
[9] M. Dutta et al., "Internet of things-based smart precision farming in soilless agriculture: Opportunities and challenges for global food security," IEEE Access, vol. 13, pp. 34238–34268, 2025, doi: 10.1109/access.2025.3540317. Available: http://dx.doi.org/10.1109/access.2025.3540317
[10] R. Pranckutė, "Web of Science (WoS) and Scopus: The titans of bibliographic information in today's academic world," Publications, vol. 9, no. 1, p. 12, Mar. 2021, doi: 10.3390/publications9010012. Available: http://dx.doi.org/10.3390/publications9010012
[11] K. M. Romero Villareal and M. C. M. Murgas, "Antimicrobial Potential of Secondary Metabolites: A Scientometric Review," interfaces, vol. 7, no. 2, 2024, Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12712. [Accessed: Jul. 08, 2025]
[12] S. D. M. Oñate and A. F. T. Herazo, "Agrivoltaic systems: a contribution to sustainability," interfaces, vol. 7, no. 2, 2024, Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12713. [Accessed: Jul. 08, 2025]
[13] A. J. B. Berrocal and D. M. C. Rizo, "Scientometric Analysis of the Relationship Between Artificial Intelligence and Data Engineering: Trends, Collaboration, and Evolution," interfaces, vol. 7, no. 2, 2024, Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12714. [Accessed: Jul. 08, 2025]
[14] M. J. Page et al., "The PRISMA 2020 statement: an updated guideline for reporting systematic reviews," BMJ, vol. 372, p. n71, Mar. 2021, doi: 10.1136/bmj.n71. Available: http://dx.doi.org/10.1136/bmj.n71
[15] S. Valencia, M. Zuluaga, M. C. Florian Pérez, K. F. Montoya-Quintero, M. S. Candamil-Cortés, and S. Robledo, "Human gut microbiome: A connecting organ between nutrition, metabolism, and health," Int. J. Mol. Sci., vol. 26, no. 9, Apr. 2025, doi: 10.3390/ijms26094112. Available: http://dx.doi.org/10.3390/ijms26094112
[16] S. Robledo, D.-C. Gil-Silva, E.-J. Villegas-Jaramillo, and C. Osorio, "Examining the role of monetary incentives and tie strength in mediating satisfaction and word of mouth in multilevel marketing companies: an entrepreneurial marketing perspective," J. Res. Mark. Entrep., Mar. 2025, doi: 10.1108/jrme-07-2023-0117. Available: http://dx.doi.org/10.1108/jrme-07-2023-0117
[17] G. Torres, S. P. Rojas-Berrio, V. Duque-Uribe, and S. Robledo, "Building sales through connections: how network capabilities and tie strength foster entrepreneurial marketing," J. Res. Mark. Entrep., Oct. 2024, doi: 10.1108/jrme-08-2023-0141. Available: http://dx.doi.org/10.1108/jrme-08-2023-0141
[18] S. Robledo, B. Arias, C. García, I. Durley-Torres, and M. Zuluaga, "Margaret: Streamlining research productivity analysis in Colombia with an R package for GrupLAC integration," Issu. Sci. Technol. Libr., no. 108, Nov. 2024, doi: 10.29173/istl2777. Available: http://dx.doi.org/10.29173/istl2777
[19] G. D. Massa, H.-H. Kim, R. M. Wheeler, and C. A. Mitchell, "Plant productivity in response to LED lighting," HortScience, vol. 43, no. 7, pp. 1951–1956, Dec. 2008, doi: 10.21273/hortsci.43.7.1951. Available: http://dx.doi.org/10.21273/hortsci.43.7.1951
[20] W. D. Park, "Potato tuber proteins as molecular probes for tuberization," HortScience, vol. 19, no. 1, pp. 37–40, Feb. 1984, doi: 10.21273/hortsci.19.1.37. Available: http://dx.doi.org/10.21273/hortsci.19.1.37
[21] A. R. Beaman, R. J. Gladon, and J. A. Schrader, "Sweet basil requires an irradiance of 500 μ mol·m−2·s−1 for greatest edible biomass production," HortScience, vol. 44, no. 1, pp. 64–67, Feb. 2009, doi: 10.21273/hortsci.44.1.64. Available: http://dx.doi.org/10.21273/hortsci.44.1.64
[22] C. Kubota, C. A. Thomson, M. Wu, and J. Javanmardi, "Controlled environments for production of value-added food crops with high phytochemical concentrations: Lycopene in tomato as an example," HortScience, vol. 41, no. 3, pp. 522–525, Jun. 2006, doi: 10.21273/hortsci.41.3.522. Available: http://dx.doi.org/10.21273/hortsci.41.3.522
[23] E. Darko, P. Heydarizadeh, B. Schoefs, and M. R. Sabzalian, "Photosynthesis under artificial light: the shift in primary and secondary metabolism," Philos. Trans. R. Soc. Lond. B Biol. Sci., vol. 369, no. 1640, p. 20130243, Apr. 2014, doi: 10.1098/rstb.2013.0243. Available: http://dx.doi.org/10.1098/rstb.2013.0243
[24] M. Bamsey, T. Graham, C. Thompson, A. Berinstain, A. Scott, and M. Dixon, "Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems," Sensors (Basel), vol. 12, no. 10, pp. 13349–13392, Oct. 2012, doi: 10.3390/s121013349. Available: http://dx.doi.org/10.3390/s121013349
[25] D. Despommier, "The vertical farm: controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations," J. Consum. Prot. Food Saf., vol. 6, no. 2, pp. 233–236, Jun. 2011, doi: 10.1007/s00003-010-0654-3. Available: http://dx.doi.org/10.1007/s00003-010-0654-3
[26] K. Benke and B. Tomkins, "Future food-production systems: vertical farming and controlled-environment agriculture," Sustain. Sci. Pract. Policy, vol. 13, no. 1, pp. 13–26, Jan. 2017, doi: 10.1080/15487733.2017.1394054. Available: http://dx.doi.org/10.1080/15487733.2017.1394054
[27] R. Ramin Shamshiri et al., "Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture," Int. J. Agric. Biol. Eng., vol. 11, no. 1, pp. 1–22, 2018, doi: 10.25165/j.ijabe.20181101.3210. Available: http://dx.doi.org/10.25165/j.ijabe.20181101.3210
[28] F. Bantis, S. Smirnakou, T. Ouzounis, A. Koukounaras, N. Ntagkas, and K. Radoglou, "Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs)," Sci. Hortic. (Amsterdam), vol. 235, pp. 437–451, May 2018, doi: 10.1016/j.scienta.2018.02.058. Available: http://dx.doi.org/10.1016/j.scienta.2018.02.058
[29] R. Junge, B. König, M. Villarroel, T. Komives, and M. Jijakli, "Strategic points in aquaponics," Water (Basel), vol. 9, no. 3, p. 182, Mar. 2017, doi: 10.3390/w9030182. Available: http://dx.doi.org/10.3390/w9030182
[30] Y. Zhang, Z. Xiao, E. Ager, L. Kong, and L. Tan, "Nutritional quality and health benefits of microgreens, a crop of modern agriculture," Journal of Future Foods, vol. 1, no. 1, pp. 58–66, Sep. 2021, doi: 10.1016/j.jfutfo.2021.07.001. Available: http://dx.doi.org/10.1016/j.jfutfo.2021.07.001
[31] E. Iddio, L. Wang, Y. Thomas, G. McMorrow, and A. Denzer, "Energy efficient operation and modeling for greenhouses: A literature review," Renew. Sustain. Energy Rev., vol. 117, no. 109480, p. 109480, Jan. 2020, doi: 10.1016/j.rser.2019.109480. Available: http://dx.doi.org/10.1016/j.rser.2019.109480
[32] N. Engler and M. Krarti, "Review of energy efficiency in controlled environment agriculture," Renew. Sustain. Energy Rev., vol. 141, no. 110786, p. 110786, May 2021, doi: 10.1016/j.rser.2021.110786. Available: http://dx.doi.org/10.1016/j.rser.2021.110786
[33] P. Zabel, M. Bamsey, D. Schubert, and M. Tajmar, "Review and analysis of over 40 years of space plant growth systems," Life Sci. Space Res. (Amst.), vol. 10, pp. 1–16, Aug. 2016, doi: 10.1016/j.lssr.2016.06.004. Available: http://dx.doi.org/10.1016/j.lssr.2016.06.004
[34] N. Gruda, M. Bisbis, and J. Tanny, "Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production – A review," J. Clean. Prod., vol. 225, pp. 324–339, Jul. 2019, doi: 10.1016/j.jclepro.2019.03.295. Available: http://dx.doi.org/10.1016/j.jclepro.2019.03.295
[35] C. A. O'Sullivan, G. D. Bonnett, C. L. McIntyre, Z. Hochman, and A. P. Wasson, "Strategies to improve the productivity, product diversity and profitability of urban agriculture," Agric. Syst., vol. 174, pp. 133–144, Aug. 2019, doi: 10.1016/j.agsy.2019.05.007. Available: http://dx.doi.org/10.1016/j.agsy.2019.05.007
[36] O. Alrifai, X. Hao, M. F. Marcone, and R. Tsao, "Current review of the modulatory effects of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables," J. Agric. Food Chem., vol. 67, no. 22, pp. 6075–6090, Jun. 2019, doi: 10.1021/acs.jafc.9b00819. Available: http://dx.doi.org/10.1021/acs.jafc.9b00819
[37] T. Weidner, A. Yang, and M. W. Hamm, "Energy optimisation of plant factories and greenhouses for different climatic conditions," Energy Convers. Manag., vol. 243, no. 114336, p. 114336, Sep. 2021, doi: 10.1016/j.enconman.2021.114336. Available: http://dx.doi.org/10.1016/j.enconman.2021.114336
[38] P. K. Pal, M. Mahajan, B. K. Thakur, P. Kapoor, and Shivani, "Achievement of higher biomass, yield and quality of essential oil of Tagetes minuta L. through optimizing the sowing method and seeding rate," Front. Plant Sci., vol. 14, p. 1133370, Jun. 2023, doi: 10.3389/fpls.2023.1133370. Available: http://dx.doi.org/10.3389/fpls.2023.1133370
[39] A. Sharma, V. Kumar, C. Mittal, V. Rana, K. Dabral, and G. Parveen, "Role of essential oil used pharmaceutical cosmetic product," J. Res. Appl. Sci. Biotechnol., vol. 2, no. 3, pp. 147–157, Jun. 2023, doi: 10.55544/jrasb.2.3.19. Available: http://dx.doi.org/10.55544/jrasb.2.3.19
[40] W. Mucha and D. Witkowska, "The applicability of essential oils in different stages of production of animal-based foods," Molecules, vol. 26, no. 13, p. 3798, Jun. 2021, doi: 10.3390/molecules26133798. Available: http://dx.doi.org/10.3390/molecules26133798
[41] A. Rejeb, K. Rejeb, A. Abdollahi, and A. Hassoun, "Precision agriculture: A bibliometric analysis and research agenda," Smart Agric. Technol., vol. 9, no. 100684, p. 100684, Dec. 2024, doi: 10.1016/j.atech.2024.100684. Available: http://dx.doi.org/10.1016/j.atech.2024.100684
[42] J. Xu, Y. Cui, S. Zhang, and M. Zhang, "The evolution of precision agriculture and food safety: a bibliometric study," Front. Sustain. Food Syst., vol. 8, p. 1475602, Dec. 2024, doi: 10.3389/fsufs.2024.1475602. Available: https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2024.1475602/pdf. [Accessed: Jul. 08, 2025]
[43] N. Y. Gómez Velasco, O. Gregorio Chaviano, and A. L. Ballesteros Alfonso, "Dinámicas de la producción científica colombiana en economía," Lect. Econ., no. 95, pp. 277–309, May 2021, doi: 10.17533/udea.le.n95a344139. Available: http://dx.doi.org/10.17533/udea.le.n95a344139
[44] B. Jyotsna, S. Patil, Y. S. Prakash, P. Rathnagiri, P. B. Kavi Kishor, and N. Jalaja, "Essential oils from plant resources as potent insecticides and repellents: Current status and future perspectives," Biocatal. Agric. Biotechnol., vol. 61, no. 103395, p. 103395, Oct. 2024, doi: 10.1016/j.bcab.2024.103395. Available: http://dx.doi.org/10.1016/j.bcab.2024.103395
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Interfaces

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.