Biopolímeros y pectina: Una revisión con Tree of Science

Autores/as

Palabras clave:

Pectina, biodegradables, polímeros, Tree of Science, seguridad ambiental

Resumen

La mayoría de los materiales empleados para el envasado alimentario son derivados del petróleo, una alternativa que se plantea en esta revisión es la utilización de materiales biodegradables que satisfacen las crecientes demandas de la sociedad para la sostenibilidad y la seguridad ambiental, y de esta manera mitigar el consumo. Por esta razón, recientemente han surgido propuestas de diferentes biopolímeros para disminuir el impacto ambiental de los plásticos de un solo uso. Este estudio presenta una revisión sobre la pectina como una opción de biopolímero para la solución de estos problemas ambientales. Se realizó una búsqueda en Scopus y los resultados se subieron a la plataforma de Tree of Science para identificar los artículos, raíz, tronco y ramas (subáreas). Los resultados muestran que, aunque el uso de biopolímeros ha sido limitado debido a las pobres propiedades mecánicas y de barrera, estas propiedades pueden mejorarse revistiendo la parte exterior con nanocompositos, tales como las nanoarcillas, las cuales presentan un material cristalino de grano fino que se utiliza como aditivo para la fabricación de nanocompuestos y mejorar significativamente las propiedades de los materiales poliméricos

Descargas

Los datos de descarga aún no están disponibles.

Referencias

A. G. J. Voragen, G.-J. Coenen, R. P. Verhoef, and H. A. Schols, “Pectin, a versatile polysaccharide present in plant cell walls,” Struct. Chem., vol. 20, no. 2, pp. 263–275, Apr. 2009, doi: 10.1007/s11224-009-9442-z.

P. Moll, H. Salminen, C. Roeth, C. Schmitt, and J. Weiss, “Concentrated pea protein – apple pectin mixtures as food glue: Influence of biopolymer concentration and pH on stickiness,” Food Hydrocoll., vol. 130, p. 107671, Sep. 2022, doi: 10.1016/j.foodhyd.2022.107671.

B. L. Ridley, M. A. O’Neill, and D. Mohnen, “Pectins: structure, biosynthesis, and oligogalacturonide-related signaling,” Phytochemistry, vol. 57, no. 6, pp. 929–967, Jul. 2001, doi: 10.1016/S0031-9422(01)00113-3.

J. A. Moral-Muñoz, E. Herrera-Viedma, A. Santisteban-Espejo, and M. J. Cobo, “Software tools for conducting bibliometric analysis in science: An up-to-date review,” Profesional de la información, vol. 29, no. 1, Jan. 2020, doi: 10.3145/epi.2020.ene.03.

F. Munarin, M. C. Tanzi, and P. Petrini, “Advances in biomedical applications of pectin gels,” Int. J. Biol. Macromol., vol. 51, no. 4, pp. 681–689, Nov. 2012, doi: 10.1016/j.ijbiomac.2012.07.002.

C. Schmitt, C. Sanchez, S. Desobry-Banon, and J. Hardy, “Structure and technofunctional properties of protein-polysaccharide complexes: a review,” Crit. Rev. Food Sci. Nutr., vol. 38, no. 8, pp. 689–753, Nov. 1998, doi: 10.1080/10408699891274354.

B. R. Thakur, R. K. Singh, and A. K. Handa, “Chemistry and uses of pectin--a review,” Crit. Rev. Food Sci. Nutr., vol. 37, no. 1, pp. 47–73, Feb. 1997, doi: 10.1080/10408399709527767.

M. Zuluaga, S. Robledo, O. Arbelaez-Echeverri, G. A. Osorio-Zuluaga, and N. Duque-Méndez, “Tree of Science - ToS: A Web-based Tool for Scientific Literature Recommendation. Search Less, Research More!,” Issues Sci. Technol. Librariansh., vol. 100, 2022, doi: 10.29173/istl2696.

S. Robledo, M. Zuluaga, L. A. Valencia, O. Arbelaez-Echeverri, P. Duque, and J.-D. Alzate-Cardona, “Tree of Science with Scopus: A Shiny Application,” Issues Sci. Technol. Librariansh., vol. 100, 2022, doi: 10.29173/istl2698.

“Eyespy: April 2009,” BMJ. p. b978, 2009. doi: 10.1136/sbmj.b978.

D. S. Valencia-Hernandez, S. Robledo, R. Pinilla, N. D. Duque-Méndez, and G. Olivar-Tost, “SAP Algorithm for Citation Analysis: An improvement to Tree of Science,” Ingeniería e Investigación, vol. 40, no. 1, pp. 45–49, 2020, doi: 10.15446/ing.investig.v40n1.77718.

D. A. Torres, A. M. B. Rodríguez, and P. A. E. Gutiérrez, “COVID-19 in Business, Management, and Economics: Research Perspectives and Bibliometric Analysis,” BAR, Braz. Adm. Rev., vol. 19, no. 3, Jul. 2022, doi: 10.1590/1807-7692bar2022220016.

P. López-Rubio, N. Roig-Tierno, and A. Mas-Tur, ¿“Which regions produce the most innovation policy research?,” Policy Studies, pp. 1–23, Jun. 2021, doi: 10.1080/01442872.2021.1937595.

A. E. Rubio, G. Y. F. Yepes, and L. A. V. Marín, “Gobernanza para el desarrollo y la sostenibilidad de los destinos turísticos: una revisión de la literatura con ToS,” Interfaces, vol. 5, no. 1, Sep. 2022, Accessed: Oct. 01, 2022. [Online]. Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/9459

T. Gersson, S. Robledo, and S. Rojas-Berrio, “Market orientation: importance, evolution, and emerging approaches using scientometric analysis,” Criterio Libre, vol. 19, no. 35, pp. 326–340, 2021.

A. M. Barrera Rodríguez, E. J. Duque Oliva, and J. A. Vieira Salazar, “Actor engagement: origin, evolution and trends,” J. bus. ind. mark., Sep. 2022, doi: 10.1108/jbim-11-2021-0512.

S. Robledo, A. M. Grisales Aguirre, M. Hughes, and F. Eggers, “‘Hasta la vista, ¿baby’ – will machine learning terminate human literature reviews in entrepreneurship?,” J. Small Bus. Manage., pp. 1–30, Aug. 2021, doi: 10.1080/00472778.2021.1955125.

V. Ramos-Enríquez, P. Duque, and J. A. V. Salazar, “Responsabilidad Social Corporativa y Emprendimiento: evolución y tendencias de investigación,” Des.Geren, vol. 13, no. 1, pp. 1–34, Apr. 2021, doi: 10.17081/dege.13.1.4210.

E. G. Muñoz, R. Fabregat, J. Bacca-Acosta, N. Duque-Méndez, and C. Avila-Garzon, “Augmented Reality, Virtual Reality, and Game Technologies in Ophthalmology Training,” Information, vol. 13, no. 5, p. 222, Apr. 2022, doi: 10.3390/info13050222.

H. Semanate-Quiñonez, A. Upegui-Valencia, and M. Upequi-Valencia, “Blended learning, avances y tendencias en la educación superior: una aproximación a la literatura,” Inf. tec., vol. 86, no. 1, pp. 46–68, 2022, doi: 10.23850/22565035.3705.

D. D. Durán-Aranguren, S. Robledo, E. Gomez-Restrepo, J. W. Arboleda Valencia, and N. A. Tarazona, “Scientometric Overview of Coffee By-Products and Their Applications,” Molecules, vol. 26, no. 24, p. 7605, Dec. 2021, doi: 10.3390/molecules26247605.

A. S. Gómez Tabares and M. C. Correa Duque, “La asociación entre acoso y ciberacoso escolar y el efecto predictor de la desconexión moral: una revisión bibliométrica basada en la teoría de grafos,” Educ. XX1, vol. 25, no. 1, pp. 273–308, Jan. 2022, doi: 10.5944/educxx1.29995.

F. Eggers, H. Risselada, T. Niemand, and S. Robledo, “Referral campaigns for software startups: The impact of network characteristics on product adoption,” J. Bus. Res., vol. 145, pp. 309–324, Jun. 2022, doi: 10.1016/j.jbusres.2022.03.007.

R. M. Hodge, G. H. Edward, and G. P. Simon, “Water absorption and states of water in semicrystalline poly(vinyl alcohol) films,” Polymer , vol. 37, no. 8, pp. 1371–1376, Apr. 1996, doi: 10.1016/0032-3861(96)81134-7.

I. T. Norton and W. J. Frith, “Microstructure design in mixed biopolymer composites,” Food Hydrocoll., vol. 15, no. 4–6, pp. 543–553, Jul. 2001, doi: 10.1016/s0268-005x(01)00062-5.

C. G. de Kruif and R. Tuinier, “Polysaccharide protein interactions,” Food Hydrocoll., vol. 15, no. 4–6, pp. 555–563, Jul. 2001, doi: 10.1016/s0268-005x(01)00076-5.

M. Girard, S. L. Turgeon, and S. F. Gauthier, “Interbiopolymer complexing between β-lactoglobulin and low- and high-methylated pectin measured by potentiometric titration and ultrafiltration,” Food Hydrocoll., vol. 16, no. 6, pp. 585–591, Nov. 2002, doi: 10.1016/s0268-005x(02)00020-6.

M.-F. Grenier-Loustalot, S. Larroque, D. Grande, P. Grenier, and D. Bedel, “Phenolic resins: 2. Influence of catalyst type on reaction mechanisms and kinetics,” Polymer , vol. 37, no. 8, pp. 1363–1369, Apr. 1996, doi: 10.1016/0032-3861(96)81133-5.

M. Girard, S. L. Turgeon, and S. F. Gauthier, “Thermodynamic parameters of beta-lactoglobulin-pectin complexes assessed by isothermal titration calorimetry,” J. Agric. Food Chem., vol. 51, no. 15, pp. 4450–4455, Jul. 2003, doi: 10.1021/jf0259359.

N. Neirynck, P. Van der Meeren, M. Lukaszewicz-Lausecker, J. Cocquyt, D. Verbeken, and K. Dewettinck, “Influence of pH and biopolymer ratio on whey protein–pectin interactions in aqueous solutions and in O/W emulsions,” Colloids Surf. A Physicochem. Eng. Asp., vol. 298, no. 1, pp. 99–107, Apr. 2007, doi: 10.1016/j.colsurfa.2006.12.001.

O. G. Jones, E. A. Decker, and D. J. McClements, “Formation of biopolymer particles by thermal treatment of β-lactoglobulin–pectin complexes,” Food Hydrocoll., vol. 23, no. 5, pp. 1312–1321, Jul. 2009, doi: 10.1016/j.foodhyd.2008.11.013.

P. Moll, H. Salminen, A. Rausch, C. Schmitt, and J. Weiss, “Adjusting the stickiness of concentrated pea protein – apple pectin systems via the biopolymer mixing ratio,” Future Foods, vol. 6, no. 100184, p. 100184, Dec. 2022, doi: 10.1016/j.fufo.2022.100184.

A. Archut, S. Drusch, and H. Kastner, “Complex coacervation of pea protein and pectin: Effect of degree and pattern of free carboxyl groups on biopolymer interaction,” Food Hydrocoll., vol. 133, no. 107884, p. 107884, Dec. 2022, doi: 10.1016/j.foodhyd.2022.107884.

L. Mihalcea et al., “Whey Proteins Isolate-Based Biopolymeric Combinations to Microencapsulate Supercritical Fluid Extracted Oleoresins from Sea Buckthorn Pomace,” Pharmaceuticals , vol. 14, no. 12, Nov. 2021, doi: 10.3390/ph14121217.

K. Protte, F. Balinger, J. Weiss, R. Löffler, and S. Nöbel, “Establishing the biopolymer ratio of whey protein–pectin complexes before and after thermal stabilisation,” Food Hydrocoll., vol. 89, pp. 554–562, Apr. 2019, doi: 10.1016/j.foodhyd.2018.11.015.

Y. Lan, B. Chen, and J. Rao, “Pea protein isolate–high methoxyl pectin soluble complexes for improving pea protein functionality: Effect of pH, biopolymer ratio and concentrations,” Food Hydrocoll., vol. 80, pp. 245–253, Jul. 2018, doi: 10.1016/j.foodhyd.2018.02.021.

C. J. F. Souza, A. R. da Costa, C. F. Souza, F. F. S. Tosin, and E. E. Garcia-Rojas, “Complex coacervation between lysozyme and pectin: Effect of pH, salt, and biopolymer ratio,” Int. J. Biol. Macromol., vol. 107, no. Pt A, pp. 1253–1260, Feb. 2018, doi: 10.1016/j.ijbiomac.2017.09.104.

B. Zeeb, L. Mi-Yeon, M. Gibis, and J. Weiss, “Growth phenomena in biopolymer complexes composed of heated WPI and pectin,” Food Hydrocoll., vol. 74, pp. 53–61, Jan. 2018, doi: 10.1016/j.foodhyd.2017.07.026.

B. Zeeb et al., “Mixing behaviour of WPI-pectin-complexes in meat dispersions: impact of biopolymer ratios,” Food Funct., vol. 8, no. 1, pp. 333–340, Jan. 2017, doi: 10.1039/c6fo01436d.

B. Zeeb, C. Stenger, J. Hinrichs, and J. Weiss, “Formation of concentrated particles composed of oppositely charged biopolymers for food applications – impact of processing conditions,” Food Structure, vol. 10, pp. 10–20, Oct. 2016, doi: 10.1016/j.foostr.2016.10.002.

G. Callejas-Quijada, N. Chavarría-Hernández, M.-R. López-Cuellar, A. Zepeda-Bastida, and A.-I. Rodríguez-Hernández, “Films of biopolymers, pectin and gellan, enriched with natamycin and clove essential oils for the packaging of Corn tortilla: Protection against Staphylococcus aureus and Candida parapsilosis,” Food Microbiol., vol. 110, p. 104156, Apr. 2023, doi: 10.1016/j.fm.2022.104156.

S. Regina, T. Poerio, R. Mazzei, C. Sabia, R. Iseppi, and L. Giorno, “Pectin as a non-toxic crosslinker for durable and water-resistant biopolymer-based membranes with improved mechanical and functional properties,” Eur. Polym. J., vol. 172, p. 111193, Jun. 2022, doi: 10.1016/j.eurpolymj.2022.111193.

L. Marangoni Júnior, C. R. Fozzatti, E. Jamróz, R. P. Vieira, and R. M. V. Alves, “Biopolymer-Based Films from Sodium Alginate and Citrus Pectin Reinforced with SiO2,” Materials , vol. 15, no. 11, May 2022, doi: 10.3390/ma15113881.

M. Ramos-Andrés, S. Díaz-Cesteros, N. Majithia, and J. García-Serna, “Pilot-scale biorefinery for the production of purified biopolymers based on hydrothermal treatment in flow-through reactor cycles,” Chem. Eng. J., vol. 437, p. 135123, Jun. 2022, doi: 10.1016/j.cej.2022.135123.

J. Chu et al., “Short-time acoustic and hydrodynamic cavitation improves dispersibility and functionality of pectin-rich biopolymers from citrus waste,” J. Clean. Prod., vol. 330, p. 129789, Jan. 2022, doi: 10.1016/j.jclepro.2021.129789.

P. Choudhary, A. Pathak, P. Kumar, S, Chetana, and N. Sharma, “Commercial production of bioplastic from organic waste–derived biopolymers viz-a-viz waste treatment: A minireview,” Biomass Conversion and Biorefinery, Aug. 2022, doi: 10.1007/s13399-022-03145-1.

Geetanjali and R. Singh, “Chapter 3 - Production of biopolymer-based nanoparticles,” in Bio-Based Nanomaterials, A. K. Mishra and C. M. Hussain, Eds. Elsevier, 2022, pp. 53–65. doi: 10.1016/B978-0-323-85148-0.00003-8.

D. N. Dao, P. H. Le, D. X. Do, T. M. Q. Dang, S. K. Nguyen, and V. Nguyen, “Pectin and cellulose extracted from coffee pulps and their potential in formulating biopolymer films,” Biomass Convers. Biorefin., Jan. 2022, doi: 10.1007/s13399-022-02339-x.

X. Z. Tang, P. Kumar, S. Alavi, and K. P. Sandeep, “Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials,” Crit. Rev. Food Sci. Nutr., vol. 52, no. 5, pp. 426–442, 2012, doi: 10.1080/10408398.2010.500508.

R. J. N. Tiozon, A. P. Bonto, and N. Sreenivasulu, “Enhancing the functional properties of rice starch through biopolymer blending for industrial applications: A review,” Int. J. Biol. Macromol., vol. 192, pp. 100–117, Dec. 2021, doi: 10.1016/j.ijbiomac.2021.09.194.

B. Jaleh, M. Nasrollahzadeh, A. Nasri, M. Eslamipanah, A. Moradi, and Z. Nezafat, “Biopolymer-derived (nano)catalysts for hydrogen evolution via hydrolysis of hydrides and electrochemical and photocatalytic techniques: A review,” Int. J. Biol. Macromol., vol. 182, pp. 1056–1090, Jul. 2021, doi: 10.1016/j.ijbiomac.2021.04.087.

P. Perumal, P. Christopher Selvin, and S. Selvasekarapandian, “Characterization of biopolymer pectin with lithium chloride and its applications to electrochemical devices,” Ionics , vol. 24, no. 10, pp. 3259–3270, Oct. 2018, doi: 10.1007/s11581-018-2507-5.

Descargas

Publicado

2023-10-06

Número

Sección

Artículos