Inteligencia Artificial en la Administración: una revisión de la literatura utilizando Tree of Science
PDF INGLES

Palabras clave

Inteligencia Artificial
Administración
Revisión
Tree of Science
Aprendizaje de maquinaria
Aprendizaje profundo
Administración de cadenas de abastecimiento
Recursos humanos
Cienciometría Artificial Intelligence
Management
Review
Tree of Science
Machine Learning
Deep Learning
Big Data
Supply Chain Management
Human Resources
Scientometrics

Resumen

La Inteligencia Artificial (IA) y las posibilidades de futuro que nos depara, pueden reducir las tareas diarias y permitirnos desarrollar diferentes actividades en la Administración. Aunque la IA ha sido estudiada e investigada hasta el día de hoy, este artículo nos muestra las posibilidades reales de la IA en el presente y el futuro en la Administración. Los principales artículos se identificaron mediante la metodología Tree of Science a partir de una búsqueda en Scopus.

El estudio concluye mostrando las perspectivas sobre el futuro de la IA y es práctico e importante conocer esto para mejorar el desempeño de la gestión en las empresas. Obtener más conocimiento sobre IA podría ser beneficioso ya que se podrían eliminar el error humano, la competencia y más, lo que mejoraría aún más el campo de administración.

PDF INGLES

Citas

D. P. Nguyen, L. T. Phan, H. X. Ho, and A. N. H. Le, “Human resource management practices in higher education: a literature review using co-word analysis,” Int. J. Manage. Educ., vol. 16, no. 1, p. 40, 2022, doi: 10.1504/ijmie.2022.119682.

V. Holzmann, D. Zitter, and S. Peshkess, “The Expectations of Project Managers from Artificial Intelligence: A Delphi Study,” Proj. Manage. J., vol. 53, no. 5, pp. 438–455, Oct. 2022, doi: 10.1177/87569728211061779.

M. H. Jarrahi, “Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making,” Bus. Horiz., vol. 61, no. 4, pp. 577–586, Jul. 2018, doi: 10.1016/j.bushor.2018.03.007.

C. Fisch and J. Block, “Six tips for your (systematic) literature review in business and management research,” Management Review Quarterly, vol. 68, no. 2, pp. 103–106, Apr. 2018, doi: 10.1007/s11301-018-0142-x.

S. Robledo, M. Zuluaga, L.-A. Valencia, O. Arbelaez-Echeverri, P. Duque, and J.-D. Alzate-Cardona, “Tree of Science with Scopus: A Shiny Application,” Issues Sci. Technol. Librariansh., vol. 100, 2022, doi: 10.29173/istl2698.

A. S. Gómez Tabares and M. C. Correa Duque, “La asociación entre acoso y ciberacoso escolar y el efecto predictor de la desconexión moral: una revisión bibliométrica basada en la teoría de grafos,” Educ. XX1, vol. 25, no. 1, pp. 273–308, Jan. 2022, doi: 10.5944/educxx1.29995.

S. Robledo-Giraldo, J. G. Figueroa-Camargo, M. V. Zuluaga-Rojas, S. B. Vélez-Escobar, and P. L. D.- Hurtado, “Mapping, evolution, and application trends in co-citation analysis: a scientometric approach,” rev. investig. desarro. innov, vol. 13, no. 1, pp. 201–214, Feb. 2023, doi: 10.19053/20278306.v13.n1.2023.16070.

D. A. Torres, A. M. B. Rodríguez, and P. A. E. Gutiérrez, “COVID-19 in Business, Management, and Economics: Research Perspectives and Bibliometric Analysis,” BAR, Braz. Adm. Rev., vol. 19, no. 3, Jul. 2022, doi: 10.1590/1807-7692bar2022220016.

P. López-Rubio, N. Roig-Tierno, and A. Mas-Tur, “Which regions produce the most innovation policy research?,” Policy Studies, pp. 1–23, Jun. 2021, doi: 10.1080/01442872.2021.1937595.

A. E. Rubio, G. Y. F. Yepes, and L. A. V. Marín, “Gobernanza para el desarrollo y la sostenibilidad de los destinos turísticos: una revisión de la literatura con ToS,” Interfaces , vol. 5, no. 1, Sep. 2022, Accessed: Oct. 01, 2022. [Online]. Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/9459

S. Robledo, V. John-Eider, D.-M. Néstor-Darìo, and V. Duque-Uribe, “Networking as an entrepreneurial marketing tool: the link between effectuation and word of mouth,” Journal of Research in Marketing and Entrepreneurship, vol. 25, no. 2, pp. 270–285, Jan. 2022, doi: 10.1108/JRME-08-2020-0112.

G. Torres, S. Robledo, and S. Rojas-Berrio, “Market orientation: importance, evolution, and emerging approaches using scientometric analysis,” Criterio Libre, vol. 19, no. 35, pp. 326–340, 2021.

A. M. Barrera Rodríguez, E. J. Duque Oliva, and J. A. Vieira Salazar, “Actor engagement: origin, evolution and trends,” J. bus. ind. mark., Sep. 2022, doi: 10.1108/jbim-11-2021-0512.

S. Robledo, P. Duque, and A. M. G. Aguirre, “Word of Mouth Marketing: A Scientometric Analysis,” J. Sci. Res., vol. 11, no. 3, pp. 436–446, Jan. 2023, doi: 10.5530/jscires.11.3.47.

S. Robledo, A. M. Grisales Aguirre, M. Hughes, and F. Eggers, “‘Hasta la vista, baby’ – will machine learning terminate human literature reviews in entrepreneurship?,” J. Small Bus. Manage., pp. 1–30, Aug. 2021, doi: 10.1080/00472778.2021.1955125.

V. Ramos-Enríquez, P. Duque, and J. A. V. Salazar, “Responsabilidad Social Corporativa y Emprendimiento: evolución y tendencias de investigación,” Des.Geren, vol. 13, no. 1, pp. 1–34, Apr. 2021, doi: 10.17081/dege.13.1.4210.

E. G. Muñoz, R. Fabregat, J. Bacca-Acosta, N. Duque-Méndez, and C. Avila-Garzon, “Augmented Reality, Virtual Reality, and Game Technologies in Ophthalmology Training,” Information, vol. 13, no. 5, p. 222, Apr. 2022, doi: 10.3390/info13050222.

H. Semanate-Quiñonez, A. Upegui-Valencia, and M. Upequi-Valencia, “Blended learning, avances y tendencias en la educación superior: una aproximación a la literatura,” Inf. tec., vol. 86, no. 1, pp. 46–68, 2022, doi: 10.23850/22565035.3705.

A. M. G. A., S. Robledo, and M. Zuluaga, “Topic Modeling: Perspectives From a Literature Review,” IEEE Access, vol. 11, pp. 4066–4078, 2023, doi: 10.1109/ACCESS.2022.3232939.

D. D. Durán-Aranguren, S. Robledo, E. Gomez-Restrepo, J. W. Arboleda Valencia, and N. A. Tarazona, “Scientometric Overview of Coffee By-Products and Their Applications,” Molecules, vol. 26, no. 24, p. 7605, Dec. 2021, doi: 10.3390/molecules26247605.

K. A. Aguirre and D. Paredes Cuervo, “Water Safety and Water Governance: A Scientometric Review,” Sustain. Sci. Pract. Policy, vol. 15, no. 9, p. 7164, Apr. 2023, doi: 10.3390/su15097164.

C. M. Botero, C. B. Milanes, and S. Robledo, “50 years of the Coastal Zone Management Act: The bibliometric influence of the first coastal management law on the world,” Mar. Policy, vol. 150, p. 105548, Apr. 2023, doi: 10.1016/j.marpol.2023.105548.

F. Eggers, H. Risselada, T. Niemand, and S. Robledo, “Referral campaigns for software startups: The impact of network characteristics on product adoption,” J. Bus. Res., vol. 145, pp. 309–324, Jun. 2022, doi: 10.1016/j.jbusres.2022.03.007.

M. Haenlein and A. Kaplan, “A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence,” Calif. Manage. Rev., vol. 61, no. 4, pp. 5–14, Aug. 2019, doi: 10.1177/0008125619864925.

P. Tambe, P. Cappelli, and V. Yakubovich, “Artificial Intelligence in Human Resources Management: Challenges and a Path Forward,” Calif. Manage. Rev., vol. 61, no. 4, pp. 15–42, Aug. 2019, doi: 10.1177/0008125619867910.

Y. Duan, J. S. Edwards, and Y. K. Dwivedi, “Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda,” International Journal of Information Management, vol. 48. pp. 63–71, 2019. doi: 10.1016/j.ijinfomgt.2019.01.021.

Y. K. Dwivedi et al., “Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy,” Int. J. Inf. Manage., vol. 57, no. 101994, p. 101994, Apr. 2021, doi: 10.1016/j.ijinfomgt.2019.08.002.

C. B. Frey and M. A. Osborne, “The future of employment: How susceptible are jobs to computerisation?,” Technol. Forecast. Soc. Change, vol. 114, pp. 254–280, Jan. 2017, doi: 10.1016/j.techfore.2016.08.019.

A. Kaplan and M. Haenlein, “Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence,” Bus. Horiz., vol. 62, no. 1, pp. 15–25, Jan. 2019, doi: 10.1016/j.bushor.2018.08.004.

M. M. Abdeldayem and S. H. Aldulaimi, “Trends and opportunities of artificial intelligence in human resource management: Aspirations for public sector in Bahrain,” International Journal of Scientific and Technology Research.

Y. Qamar, A. R. Kumar, S. T. Ahmad, and C. J. C. Jose, “When technology meets people: the interplay of artificial intelligence and human resource management,” Journal of Enterprise Information Management, vol. 34, no. 5, pp. 1339–1370, Jan. 2021, doi: 10.1108/JEIM-11-2020-0436.

S. Chowdhury et al., “Unlocking the value of artificial intelligence in human resource management through AI capability framework,” Human Resource Management Review, vol. 33, no. 1, p. 100899, Mar. 2023, doi: 10.1016/j.hrmr.2022.100899.

R. Toorajipour, V. Sohrabpour, A. Nazarpour, P. Oghazi, and M. Fischl, “Artificial intelligence in supply chain management: A systematic literature review,” J. Bus. Res., vol. 122, pp. 502–517, Jan. 2021, doi: 10.1016/j.jbusres.2020.09.009.

J. Arias-Pérez and J. Cepeda-Cardona, “Knowledge management strategies and organizational improvisation: what changed after the emergence of technological turbulence caused by artificial intelligence?,” Baltic Journal of Management, vol. 17, no. 2, pp. 250–265, Jan. 2022, doi: 10.1108/BJM-01-2021-0027.

L. Leoni, M. Ardolino, E. B. Jamal, G. Gueli, and A. Bacchetti, “The mediating role of knowledge management processes in the effective use of artificial intelligence in manufacturing firms,” Int. J. Oper. Prod. Manage., vol. 42, no. 13, pp. 411–437, Jan. 2022, doi: 10.1108/IJOPM-05-2022-0282.

M. Kumar, R. D. Raut, S. K. Mangla, A. Ferraris, and V. K. Choubey, “The adoption of artificial intelligence powered workforce management for effective revenue growth of micro, small, and medium scale enterprises (MSMEs),” Prod. Plan. Control, pp. 1–17, Oct. 2022, doi: 10.1080/09537287.2022.2131620.

L.-W. Wong, G. W.-H. Tan, K.-B. Ooi, B. Lin, and Y. K. Dwivedi, “Artificial intelligence-driven risk management for enhancing supply chain agility: A deep-learning-based dual-stage PLS-SEM-ANN analysis,” Int. J. Prod. Res., pp. 1–21, May 2022, doi: 10.1080/00207543.2022.2063089.

B. C. Stahl, “Responsible innovation ecosystems: Ethical implications of the application of the ecosystem concept to artificial intelligence,” Int. J. Inf. Manage., vol. 62, p. 102441, Feb. 2022, doi: 10.1016/j.ijinfomgt.2021.102441.

R. Dubey, D. J. Bryde, C. Blome, D. Roubaud, and M. Giannakis, “Facilitating artificial intelligence powered supply chain analytics through alliance management during the pandemic crises in the B2B context,” Industrial Marketing Management, vol. 96, pp. 135–146, Jul. 2021, doi: 10.1016/j.indmarman.2021.05.003.

A. Bencsik, “The sixth generation of knowledge management--the headway of artificial intelligence,” Journal of International Studies, vol. 14, no. 2, 2021.

A. F. S. Borges, F. J. B. Laurindo, M. M. Spínola, R. F. Gonçalves, and C. A. Mattos, “The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions,” Int. J. Inf. Manage., vol. 57, p. 102225, Apr. 2021, doi: 10.1016/j.ijinfomgt.2020.102225.

F. Naz, A. Kumar, A. Upadhyay, H. Chokshi, V. Trinkūnas, and R. Magda, “Property management enabled by artificial intelligence post Covid-19: an exploratory review and future propositions,” Int. J. Strateg. Prop. Manage., vol. 26, no. 2, pp. 156–171, May 2022, doi: 10.3846/ijspm.2022.16923.

S. Bento, L. Pereira, R. Gonçalves, Á. Dias, R. Lopes, and A. Costa, “Artificial intelligence in project management: systematic literature review,” Int. J. Technol. Intell. Planning, vol. 13, no. 2, p. 143, 2022, doi: 10.1504/ijtip.2022.126841.

S. Mithas, Z.-L. Chen, T. J. V. Saldanha, and A. De Oliveira Silveira, “How will artificial intelligence and Industry 4.0 emerging technologies transform operations management?,” Prod. Oper. Manag., Oct. 2022, doi: 10.1111/poms.13864.

A. Aljawder and W. Al-Karaghouli, “The adoption of technology management principles and artificial intelligence for a sustainable lean construction industry in the case of Bahrain,” Journal of Decision Systems, pp. 1–30, Jun. 2022, doi: 10.1080/12460125.2022.2075529.

R. Sharma, A. Shishodia, A. Gunasekaran, H. Min, and Z. H. Munim, “The role of artificial intelligence in supply chain management: mapping the territory,” Int. J. Prod. Res., vol. 60, no. 24, pp. 7527–7550, Dec. 2022, doi: 10.1080/00207543.2022.2029611.

D. Preil and M. Krapp, “Artificial intelligence-based inventory management: a Monte Carlo tree search approach,” Ann. Oper. Res., vol. 308, no. 1–2, pp. 415–439, Jan. 2022, doi: 10.1007/s10479-021-03935-2.

S. Fosso Wamba, M. M. Queiroz, C. Guthrie, and A. Braganza, “Industry experiences of artificial intelligence (AI): benefits and challenges in operations and supply chain management,” Prod. Plan. Control, vol. 33, no. 16, pp. 1493–1497, Dec. 2022, doi: 10.1080/09537287.2021.1882695.

K. M. A. Alheeti and R. M. Aldaiyat, “A new labour safety in construction management based on artificial intelligence,” Period. Eng. Nat. Sci. (PEN), vol. 9, no. 4, p. 685, Oct. 2021, doi: 10.21533/pen.v9i4.2425.

P. Helo and Y. Hao, “Artificial intelligence in operations management and supply chain management: an exploratory case study,” Prod. Plan. Control, pp. 1–18, Apr. 2021, doi: 10.1080/09537287.2021.1882690.

M. C. Pietronudo, G. Croidieu, and F. Schiavone, “A solution looking for problems? A systematic literature review of the rationalizing influence of artificial intelligence on decision-making in innovation management,” Technol. Forecast. Soc. Change, vol. 182, p. 121828, Sep. 2022, doi: 10.1016/j.techfore.2022.121828.

X. Li, Y. Long, M. Fan, and Y. Chen, “Drilling down artificial intelligence in entrepreneurial management: A bibliometric perspective,” Syst. Res. Behav. Sci., vol. 39, no. 3, pp. 379–396, May 2022, doi: 10.1002/sres.2855.

S. Lin, E. S. Döngül, S. V. Uygun, M. B. Öztürk, D. T. N. Huy, and P. Van Tuan, “Exploring the Relationship between Abusive Management, Self-Efficacy and Organizational Performance in the Context of Human–Machine Interaction Technology and Artificial Intelligence with the Effect of Ergonomics,” Sustain. Sci. Pract. Policy, vol. 14, no. 4, p. 1949, Feb. 2022, doi: 10.3390/su14041949.

P. Hutchinson, “Reinventing Innovation Management: The Impact of Self-Innovating Artificial Intelligence,” IEEE Trans. Eng. Manage., vol. 68, no. 2, pp. 628–639, Apr. 2021, doi: 10.1109/TEM.2020.2977222.

T. V. Fridgeirsson, H. T. Ingason, H. I. Jonasson, and H. Jonsdottir, “An Authoritative Study on the Near Future Effect of Artificial Intelligence on Project Management Knowledge Areas,” Sustain. Sci. Pract. Policy, vol. 13, no. 4, p. 2345, Feb. 2021, doi: 10.3390/su13042345.

N. Haefner, J. Wincent, V. Parida, and O. Gassmann, “Artificial intelligence and innovation management: A review, framework, and research agenda✰,” Technol. Forecast. Soc. Change, vol. 162, p. 120392, Jan. 2021, doi: 10.1016/j.techfore.2020.120392.

A. Belhadi, V. Mani, S. S. Kamble, S. A. R. Khan, and S. Verma, “Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: an empirical investigation,” Ann. Oper. Res., pp. 1–26, Feb. 2021, doi: 10.1007/s10479-021-03956-x.

C. Keding, “Understanding the interplay of artificial intelligence and strategic management: four decades of research in review,” Management Review Quarterly, vol. 71, no. 1, pp. 91–134, Feb. 2021, doi: 10.1007/s11301-020-00181-x.

W. Basri, “Examining the impact of artificial intelligence (AI)-assisted social media marketing on the performance of small and medium enterprises: Toward effective business management in the Saudi Arabian context,” Proc. Int. Joint Conf. Bioinforma. Syst. Biol. Intell. Comput., vol. 13, no. 1, p. 142, 2020, doi: 10.2991/ijcis.d.200127.002.

S. Akter, K. Michael, M. R. Uddin, G. McCarthy, and M. Rahman, “Transforming business using digital innovations: the application of AI, blockchain, cloud and data analytics,” Ann. Oper. Res., vol. 308, no. 1, pp. 7–39, Jan. 2022, doi: 10.1007/s10479-020-03620-w.

A. Di Vaio, R. Palladino, R. Hassan, and O. Escobar, “Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review,” J. Bus. Res., vol. 121, pp. 283–314, Dec. 2020, doi: 10.1016/j.jbusres.2020.08.019.

A. M. Votto, R. Valecha, P. Najafirad, and H. R. Rao, “Artificial intelligence in tactical human resource management: A systematic literature review,” International Journal of Information Management Data Insights, vol. 1, no. 2, p. 100047, Nov. 2021, doi: 10.1016/j.jjimei.2021.100047.

Descargas

Los datos de descargas todavía no están disponibles.