Corruption risk prediction in public procurement processes available on Datos Abiertos platform using Gradient Boosting Machine model

Authors

  • María Fernanda Umbarila Suárez Estudiante de la Universidad Libre

DOI:

https://doi.org/10.18041/2322-8415/ingelibre.2024.v14n24.12087

Keywords:

corruption, Datos Abiertos platform, Gradient Boosting Machine, prediction, public procurement

Abstract

Corruption and the mechanisms to combat it have become an issue of high importance for governments around the world, Colombia along with other OECD countries has open databases and public procurement systems that are constantly updated, and which are made up of a large amount of data, situation that represent a challenge for the control agencies faced with the task of auditing and analyzing such information. Machine Learning is then presented as a tool to facilitate the audit of public procurement, by offering a quick mechanism to identify those contractual processes with a higher risk of corruption. Thus, this article aims to evaluate the performance of a Gradient Boosting Machine model when predicting the risk of corruption in public procurement processes available on the Datos Abiertos platform.

Downloads

Download data is not yet available.

References

E. A. Contreras Ussa, “Auditoria de datos al sistema electrónico de contratación pública ‘Colombia compra eficiente’ sustentado en un modelo de aprendizaje no supervisado,” instname:Universidad de Bogotá Jorge Tadeo Lozano, 2022, doi: 10/27843.

Corporación Transparencia por Colombia, “Radiografía de los hechos de corrupción en Colombia,” 2021, Accessed: Apr. 18, 2024. [Online]. Available: https://www.monitorciudadano.co/documentos/hc-informes/2021/Radiografia-2016-2021.pdf

J. Gallego, G. Rivero, and J. Martínez, “Preventing rather than punishing: An early warning model of malfeasance in public procurement,” Int J Forecast, vol. 37, no. 1, pp. 360–377, 2021, doi: 10.1016/j.ijforecast.2020.06.006.

J. Galvis, J. P. Marín, J. P. Garnica, H. Fonseca, H. Inga, and C. Cetina, Guía para la identificación de riesgos de corrupción en contratación pública utilizando la ciencia de datos. 2021. [Online]. Available: https://ricg.org/wp-content/uploads/2021/12/Guia-para-la-identificacion-de-riesgos-de-corrupcion-en-CP-utilizando-la-ciencia-de-datos.pdf

OEA, “Diagnóstico subregional sistema de compra y contratación pública,” OEA - Organización de los Estados Americanos, 2021, [Online]. Available: https://www.oas.org/es/centro_noticias/comunicado_prensa.asp?sCodigo=C-053/21

N. Modrušan, K. Rabuzin, and L. Mršic, “Review of Public Procurement Fraud Detection Techniques Powered by Emerging Technologies,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 2, 2021, doi: 10.14569/IJACSA.2021.0120272.

Open Contracting Partnership, “Red flags for integrity: Giving the green light to open data solutions,” 2016. Accessed: Aug. 27, 2024. [Online]. Available: https://www.open-contracting.org/resources/red-flags-integrity-giving-green-light-open-data-solutions/

J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” The Annals of Statistics, vol. 29, no. 5, Oct. 2001, doi: 10.1214/aos/1013203451.

Scikit Learn, “MultiOutputClassifier.” Accessed: Aug. 27, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputClassifier.html

Google, “Clasificación: ROC y AUC.” Accessed: Aug. 27, 2024. [Online]. Available: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc?hl=es-419#:~:text=Receiver-operating%20characteristic%20curve%20(ROC),-The%20ROC%20curve&text=The%20ROC%20curve%20is%20drawn,then%20graphing%20TPR%20over%20FPR.

Downloads

Published

2024-11-08