Cranial-cerebro Phenotypical Overlapping Syndrome: Acrania, Meroanencephaly, Hydra-meroanencephaly
DOI:
https://doi.org/10.18041/2390-0512/biociencias.1.7617Keywords:
intracranial central nervous system disorders, hydrocephalus, neurogenesis, exencephaly, lissencephalyAbstract
Introduction: This is a female newborn with craniofacial characteristics of Acrania and Meroanencephaly, whose axial tomography reports "Anencephaly, hydrocephalus, normal cerebellum and normal brain stem"
Objectives: To establish the criteria to make a correct academic diagnosis of the clinical expression that compromises malformations of the brain and skull based on the morphogenetic regulation of these two fields.
Methods: Bibliographic research on the phenotypic overlapping of the pathology and the main genes that regulate these morphogenetic fields, and the opinions of medical geneticists with expertise.
Results: The diagnosis of the clinical case is a Hydra-Meroanencephaly due to having amniotic fluid in a cavity without a brain with the presence of the skull and the brain stem. The diagnostic impressions that can result from alterations in the development of these two morphogenetic fields are: Acrania with Mero-anencephaly, Acrania without Mero-anencephaly, Holo-acrania with Exencephaly and Lissencephaly and Hydra-Meroanencephaly.
Conclusions: In the expression of the pathology there are two different morphogenetic fields (brain and bone-cranial). The BMP4 and 7 genes may be involved in Acrania. The MKX1, BF1 and ligand / PACAP genes that initiate neurogenesis may be involved in Meroanencephaly. The genes MCPH1, ASPM, CDK5RAP2, and CENPJ are involved in brain size.
Downloads
References
Fields HW et al. The craniofacial skeleton in anencephalic human fetuses. I. Cranial floor. Teratology 17: 57-65, 1978. doi: 10.1002/tera.1420170113
Gorlin RJ: Disprosopus anencephaly and facial clefting. AM J Med Genet 30: 845, 1988.
Metzner L et al. The craniofacial skeleton in anencephalic human fetuses. III Facial Skeleton. Teratology 17; 75-82, 1978. doi: 10.1002/tera.1420170115.
Robert Gorlin, M. Michael Cohen, L Stefan Lexin “Syndromes of the head and neck” Oxford University Press, Third Edition.
Moore-Persand. Embriología Clínica, Editorial Elsevier 7 ma edición, 2004.
David TJ, Nixon A. Congenital malformations associated with anencephaly and in iencephaly . J. Med Genet. 13: 263- 265, 1976.
Meinick M, Myrianthopoulus. Studies in neural tube defects II. Pathologic findings in a prospectively collected series of anencephalic. Am J. Med Genet 26: 797-810, 1987.
Khoury M.D. et al. Etiologic heterogeneity of neural tube defects. Clues from epidemiology, Am J. epidemiol. 115:538-548,1982.
Romjin JA; Treffens PE. Anencephaly in the Netherlands: A remarkable decline. Lancet 1: 64-65, 1983.
Sellen MJ, Hancock PC: Is recurrence rate of neural tube defects declining? Lancet 1:175, 1985
. Byrne J, Warburton D, Neural Tube defects in spontaneous abortions. Am J. Med Genet 25, 327-333,1986.
Salari N, Fatahi B, Fatahian R, Mohammadi P, Rahmani A, Darvishi N, Keivan M, Shohaimi S, Mohammadi M. Global prevalence of congenital anencephaly: a comprehensive systematic review and meta-analysis. Reprod Health. 2022; 19(1): 201.doi:10.1186/s12978-022-01509-4.
Holmes LB et al. Etiologic heterogeneity of neural tube defects. N. Engla J. Med 294: 365-369, 1976,
Farag TL et al. Brief clinical report. Non syndromes anencephaly: Possible autosomal recessive variant. Am J. Med Genet 24: 461-464, 1986.
Toriello HV et al. Possible X-Linked anencephaly and spina bifida- Report of a Kindred. Am J. Med Genet 6: 119-121, 1980
Severle; Strassburg MA. Epidemiologic aspects of neural tube defects in the United States: Changing concepts and their importance for screening and prenatal diagnostic programs. New York State Departments of Health. Birth defects Institute, Birth Defects Symposium XIV. Alfa protein and defects congenital disorders. Albany New York. Oct 3-4, 1983.
Rosengarten Am, Martin TM, Fetal anencephaly in a pregnant diabetic. BC Med J. 24: 406-407, 1982.
Laurence KM et al. Double-blind randomized controlled trial of folate treatment before conception to prevent recurrence of neural tube defects. Br Med J. 282: 1509-1511, 1981.
Layde PM et al. Maternal Fever and neural tube defects. Teratology 21: 105-108, 1980.
Oakley GP et al, Vitamins and neural tube defects. Lancet 2: 798-799, 1983.
Langman, Embriología Médica, página 308, editorial Lippincott Williams & Wilkins, edición 12 año 2012.
Markovic I, Bosnjakovic P, Milenkovic Z. Occipital Encephalocele: Cause, Incidence, Neuroimaging and Surgical Management. Rev. Curr Pediatr. 2020;16(3):200-205. doi: 10.2174/1573396315666191018161535
Langman, Embriología médica con orientación clínica. Edit. Panamericana 8va edición.
Vila Morales, Dadonim. Presentación de una nueva clasificación integradora de las malformaciones cráneo faciales. Revista Habanera de Ciencias Médicas, vol. 5, núm. 3, julio-septiembre, 2006
I. López Coviella, J.K.Blusztajn. Proteínas morfogenéticas y neuronas colinérgicas en el sistema nervioso central. Rev. Neurol. 2001: 33 (11) Pag 1055.
N Lu, E Dicicco-Bloom. El polipéptido activador de adenilato ciclasa hipofisario es un inhibidor autocrino de la mitosis en células precursoras corticales cultivadas. Proc Natl Acad Sci EE. UU. 1997; 94 (7): 3357-62.doi: 10.1073 / pnas.94.7.3357
E Dicicco-Bloom, N Lu, JE Pintar, J Zhang. El Sistema de ligando/receptor PACAP Regula la neurogenesis cortical cerebral. Ann NY Acad Sci, 1998; 865: 274-89. Doi:10.1111 / j.1749-6632. 1998.tb11188.x
Junghyup Suh, Nairu Lu, Arnaud Nicot, Ichiro Tatsuno & Emanuel DiCicco- Bloom. PACAP is an anti-mitogenic signal in developing cerebral cortex Nature Neuroscience volume 4, pages123–124 (2001).
Jun Watanabe, Tomoya Nakamachi, Ryousuke Matsuno, Daisuke Hayashi, Masahisa Nakamura, Sakae Kikuyama, Shigeo Nakajo, Seiji Shioda. Localización, caracterización y función del polipéptido activador de adenilato ciclasa hipofisario durante el desarrollo cerebral. Péptidos, 2007;28 (9):1713-9. Doi: 10.1016/ j. peptides.2007.06.029. Epub 2007 14 de julio.
Jacquelyn Bond. Protein-Truncating Mutations in ASPM Cause Variable Reduction in Brain Size. Am. J. Hum. Genet. 2003, 73:1170–1177. doi: 10.1016/ j. bbrc.2006.05.040. Epub 2006 15 de mayo.
Bor Luen Tang. Determinantes genéticos moleculares del tamaño del cerebro humano. Biochem Biophys Res Commun. 2006. 7;345(3):911-6. doi: 10.1016/bbrc.2006.05.040
Published
Issue
Section
License
Copyright (c) 2023 Biociencias

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.