Análisis bioinformático del lactato deshidrogenasa: un enfoque hacia Lactococcus lactis
Palabras clave:
Lactato deshidrogenasa, Lactococcus lactis, sitio alostérico, gen ldhResumen
Las bacterias ácido lácticas juegan un papel fundamental en la fermentación de los alimentos, el ácido láctico producido por este grupo de microorganismo es de alto valor y gran parte se obtiene por la fermentación del piruvato mediante la lactato deshidrogenasa. Lactococcus lactis es una de las bacterias acido lácticas más usadas en la industria de la cual se ha reportado la presencia de diferentes LDH. El objetivo de este artículo fue hacer uso de las herramientas bioinformáticas para observar y comparar las LDH encontradas en una misma cepa de L. lactis con el fin de determinar las diferentes secuencias codificantes para distintas LDH analizando su importancia e impacto en el ámbito industrial. Se utilizaron los programas y bases de datos NCBI para encontrar distintas LDH reportadas en una misma cepa y se corroboró que no se tratara de una misma proteína reportada varias veces. Además, Swiss model se usó para modelar las proteínas e identificar sus características y RasMol para sus aspectos estructurales. Se encontraron 3 LDH en la cepa UC063 de L. lactis codificadas en distintas partes del genoma con diferente secuencia de aminoácidos, se confirmó la identidad de L-LDH, LDH-2 y LDH-3 y se evidenciaron las diferentes características estructurales para cada modelamiento de las proteínas. Es importante tener en cuenta los múltiples genes ya que si se desea el redireccionamiento del flujo metabólico del microorganismo para fines industriales debe haber un múltiple silenciamiento, en cuanto al análisis proteico, es necesario evaluar las características de manera más exhausta pues en este estudio se establecieron diferencias para puntos clave como los motivos proteicos, pero no el comportamiento de cada enzima y como estas diferencias repercuten en el funcionamiento.
Descargas
Referencias
Sano A, Takatera M, Kawai M, Ichinose R, Yamasaki-Yashiki S, Katakura Y. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis. J Biosci Bioeng. 2020;
Jia B, Pu ZJ, Tang K, Jia X, Kim KH, Liu X, et al. Catalytic, Computational, and Evolutionary Analysis of the d -Lactate Dehydrogenases Responsible for d -Lactic Acid Production in Lactic Acid Bacteria. J Agric Food Chem. 2018;66(31):8371–81.
Bleckwedel J, Mohamed F, Mozzi F, Raya RR. Major role of lactate dehydrogenase D-LDH1 for the synthesis of lactic acid in Fructobacillus tropaeoli CRL 2034. Appl Microbiol Biotechnol. 2020 Sep;104(17):7409–26.
Feldman-Salit A, Hering S, Messiha HL, Veith N, Cojocaru V, Sieg A, et al. Regulation of the activity of lactate dehydrogenases from four lactic acid bacteria. J Biol Chem. 2013 Jul;288(29):21295–306.
Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ. The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor. Vol. 26, Brain Pathology. Blackwell Publishing Ltd; 2016. p. 3–17
Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II, et al. Metabolic engineering of lactic acid bacteria, the combined approach: Kinetic modelling, metabolic control and experimental analysis. Microbiology. 2002;148(4):1003–13.
Guo T, Zhang L, Xin Y, Xu Z, He H, Kong J. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367. Appl Environ Microbiol. 2017 Nov;83(21).
Zheng Z, Sheng B, Ma C, Zhang H, Gao C, Su F, et al. Relative Catalytic Efficiency of ldhL-and ldhD-Encoded Products Is Crucial for Optical Purity of Lactic Acid Produced by Lactobacillus Strains. 2012;
Singh SK, Ahmed SU, Pandey A. Metabolic engineering approaches for lactic acid production. Vol. 41, Process Biochemistry. Elsevier; 2006. p. 991–1000.
Jiang T, Guo X, Yan J, Zhang Y, Wang Y, Zhang M, et al. A bacterial multidomain NAD-independent D-lactate dehydrogenase utilizes flavin adenine dinucleotide and Fe-S clusters as cofactors and quinone as an electron acceptor for D-lac-tate oxidization. J Bacteriol. 2017 Nov;199(22):342–59.
Zhang J, Gong G, Wang X, Zhang H, Tian W. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus. IET Syst Biol. 2015;9(4):172–9.
Cristescu ME, Egbosimba EE. Evolutionary history of d-lactate dehydrogenases: A phylogenomic perspective on functional diversity in the fad binding oxidoreductase/ transferase type 4 family. J Mol Evol. 2009 Sep;69(3):276–87.
Matoba Y, Miyasako M, Matsuo K, Oda K, Noda M, Higashikawa F, et al. An alternative allosteric regulation mechanism of an acidophilic l-lactate dehydrogenase from Enterococcus mundtii 15-1A. FEBS Open Bio. 2014;4:834–47.
Cheng X, Dong Y, Su P, Xiao X. Improvement of the Fermentative Activity of Lactic Acid Bacteria Starter Culture by the Addition of Mn2+. Appl Biochem Biotechnol. 2014;174(5):1752–60.
Ancy J, Shimpei A, Kengo S, Yota T, Fumio M, Tsutomu T, et al. Utilization of Lactic Acid Bacterial Genes in Synechocystis sp. PCC 6803 in the Production of Lactic Acid. Biotechnol Biochem. 2013;77(5):966–70.
Žunar B, Trontel A, Svetec Miklenić M, Prah JL, Štafa A, Marđetko N, et al. Metabolically engineered Lactobacillus gasseri JCM 1131 as a novel producer of optically pure L- and D-lactate. World J Microbiol Biotechnol. 2020;36(8).
Pfeiler EA, Klaenhammer TR. The genomics of lactic acid bacteria. Vol. 15, Trends in Microbiology. Trends Microbiol; 2007. p. 546–53.
Song AAL, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: From food to factory. Vol. 16, Microbial Cell Factories. BioMed Central Ltd.; 2017. p. 55.
Wels M, Siezen R, Van Hijum S, Kelly WJ, Bachmann H. Comparative genome analysis of Lactococcus lactis indicates niche adaptation and resolves genotype/phenotype disparity. Front Microbiol. 2019 Jan;10(- JAN):4.
Aso Y, Hashimoto A, Ohara H. Engineering Lactococcus lactis for D-Lactic Acid Production from Starch. Curr Microbiol. 2019 Oct;76(10):1186–92.
Gaspar P, Neves AR, Shearman CA, Gasson MJ, Baptista AM, Turner DL, et al. The lactate dehydrogenases encoded by the ldh and ldhB genes in Lactococcus lactis exhibit distinct regulation and catalytic properties - Comparative modelingto probe the molecular basis. FEBS J. 2007 Nov;274(22):5924–36.
Zhao R, Zheng S, Duan C, Liu F, Yang L, Huo G. NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis. FEBS Open Bio. 2013;3:379–86.
Van Niel EWJ, Palmfeldt J, Martin R, Paese M, Hahn-Hägerdal B. Reappraisal of the Regulation of Lactococcal L-Lactate Dehydrogenase. Appl Environ Microbiol. 2004 Mar;70(3):1843–6.
Liu M, Bienfait B, Sacher O, Gasteiger J, Siezen RJ, Nauta A, et al. Combining Chemoinformatics with Bioinformatics: In Silico Prediction of Bacterial Flavor-Forming Pathways by a Chemical Systems Biology Approach “Reverse Pathway Engineering.” Cirino PC, editor. PLoS One. 2014 Jan;9(1):e84769.
Guo C, Wang Y, Huang X, Wang N, Yan M, He R, et al. Molecular cloing and bioinformatics analysis of lactate dehydrogenase from Taenia multiceps. Parasitol Res. 2017 Oct;116(10):2845–52.
ldh1 - L-lactate dehydrogenase 1 - Lactococcus lactis subsp. lactis (strain IL1403) - ldh1 gene & protein.
Bongers RS, Hoefnagel MHN, Starrenburg MJC, Siemerink MAJ, Arends JGA, Hugenholtz J, et al. IS981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis. J Bacteriol. 2003 Aug;185(15):4499–507.
Nadeem MS, Al-Ghamdi MA, Khan JA, Sadath S, Al-Malki A. Recombinant production and biochemical and in silico characterization of lactate dehydrogenase from Geobacillus thermodenitrificans DSM-465. Electron J Biotechnol. 2018;35:18–24.
Ito S, Takeya M, Osanai T. Substrate Specificity and Allosteric Regulation of a d-Lactate Dehydrogenase from a Unicellular Cyanobacterium are Altered by an Amino Acid Substitution. Sci Rep. 2017 Dec;7(1):1–9.
Neves AR, Ramos A, Shearman C, Gasson MJ, Santos H. Catabolism of mannitol in Lactococcus lactis MG1363 and a mutant defective in lactate dehydrogenase. Vol. 148, Microbiology. Society for General Microbiology; 2002. p. 3467–76.
Gaspar P, Neves AR, Gasson MJ, Shearman CA, Santos H. High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD + cofactor recycling. Appl Environ Microbiol. 2011 Oct;77(19):6826–35.
Henriksen CM, Nilsson D. Redirection of pyruvate catabolism in Lactococcus lactis by selection of mutants with additional growth requirements. Appl Microbiol Biotechnol. 2001;56(5–6):767–75.
Liu J, Chan SHJ, Chen J, Solem C, Jensen PR. Systems biology - A guide for understanding and developing improved strains of lactic acid bacteria. Front Microbiol. 2019 Apr;10(APR):876.
De Vos WM, Hugenholtz J. Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol. 2004;22(2):72–9.
Lee B, Lee D. Protein comparison at the domain architecture level. BMC Bioinformatics. 2009 Dec;10(SUPPL. 15):S5.
Furukawa N, Miyanaga A, Togawa M, Nakajima M, Taguchi H. Diverse allosteric and catalytic functions of tetrameric d-lactate dehydrogenases from three Gram-negative bacteria. AMB Express. 2014 Dec;4(1):1–12.