Análisis bioinformático de la enzima ACC desaminasa dentro del género Pseudomonas.
Palabras clave:
Bacterias promotoras de crecimiento vegetal, Bioinformática, ACC desaminasa, Pseudomonas spResumen
Las bacterias promotoras de crecimiento vegetal (BPCV) se han convertido en grandes candidatas para el mejoramiento de la metodología agrícola y el aprovechamiento de recursos biológicos propios del suelo que permiten la implementación de la agricultura sostenible. Se han clasificado múltiples géneros bacterianos con características promotoras como Pseudomonas donde destacan mejoras en el rendimiento y calidad de las plantas. Específicamente, se ha evidenciado mejoras en condiciones de estrés, cualidad que ha sido descrita y atribuida a la producción enzimática de ácido 1-aminociclopropano-1-carboxilato (ACC) desaminasa, codificada por el gen acdS. En el presente trabajo, este gen fue analizado por herramientas bioinformáticas en el género Pseudomonas, evidenciando que múltiples especies y cepas son potencialmente productoras de esta enzima al tener grandes fragmentos del gen, pero tienen mayor similitud en especies tales como P. palleroniana, P. fluorescens y P. brassicacearum.
Descargas
Referencias
Orozco-Mosqueda M del C, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol Res. 2020;235(February):126439.
Horie T, Karahara I, Katsuhara M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice. 2012;5(1):1–18.
Roy SJ, Negrão S, Tester M. Salt resistant crop plants. Curr Opin Biotechnol. 2014;26:115–24.
Santoyo G, Hernández-Pacheco C, Hernández-Salmerón J, Hernández-León R. The role of abiotic factors modulating the plant-microbesoil interactions: Toward sustainable agriculture. A review. Spanish J Agric Res. 2017;15(1):1–15.
Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol Res. 2018;209(December 2017):21– 32.
Nath Yadav A, Verma P, Singh B, Singh Chauahan V, Suman A, Kumar Saxena A. Plant Growth Promoting Bacteria: Biodiversity and Multifunctional Attributes for Sustainable Agriculture. Adv Biotechnol Microbiol. 2017;5(5).
Heydarian Z, Yu M, Gruber M, Glick BR, Zhou R, Hegedus DD. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa. Front Microbiol. 2016 Dec;7.
Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;871(October):1–17.
Hao Y, Charles TC, Glick BR. An ACC deaminase containing A. tumefaciens strain D3 shows biocontrol activity to crown gall disease. Can J Microbiol. 2011;57(4):278–86.
Husen E, Wahyudi AT, Suwanto A. Growth enhancement and disease reduction of soybean by 1-aminocyclopropane-1-carboxylate deaminase-producing Pseudomonas. Am J Appl Sci. 2011;8(11):1073–80.
Gupta S, Pandey S. Enhanced salinity tolerance in the common bean (Phaseolus vulgaris) plants using twin ACC deaminase producing rhizobacterial inoculation. Rhizosphere. 2020;16.
Gowtham HG, S BS, Murali M, Shilpa N, Prasad M, Aiyaz M, et al. Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol Res. 2020;234(August 2019):126422. 13.Belimov AA, Zinovkina NY, Safronova VI, Litvinsky VA, Nosikov V V, Zavalin AA, et al. Rhizobial ACC deaminase contributes to efficient symbiosis with pea ( Pisum sativum L .) under single and combined cadmium and water deficit stress. Environ Exp Bot. 2019;167(August):103859.
Fan D, Schwinghamer T, Smith DL. Isolation and diversity of culturable rhizobacteria associated with economically important crops and un- 31 MICROCIENCIA Investigación, Desarrollo e Innovación, Vol 9 - 2020 cultivated plants in Québec, Canada. Syst Appl Microbiol. 2018;
Belimov AA, Safronova VI, Serge yeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, et al. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol. 2001;47(7):642– 52.
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res [Internet]. 2012 Nov 26;41(D1):D36–42. Available from: http://academic.oup.com/nar/article/41/D1/D36/1068219/GenBank
McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res [Internet]. 2004 Jul 1;32(Web Server):W20–5. Available from: https://academic.oup.com/ nar/article-lookup/doi/10.1093/nar/ gkh435
Madeira F, Park Y mi, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res [Internet]. 2019 Jul 2;47(W1):W636–41. Available from: https://academic.oup.com/nar/ article/47/W1/W636/5446251
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res [Internet]. 2008 May 19;36(Web Server):W465–9. Available from: https://academic.oup. com/nar/article-lookup/doi/10.1093/ nar/gkn180 20. Berman HM. The Protein Data Bank. Nucleic Acids Res [Internet]. 2000 Jan 1;28(1):235–42. Available from: https://academic.oup. com/nar/article-lookup/doi/10.1093/ nar/28.1.235
Barnawal D, Pandey SS, Bharti N, Pandey A, Ray T, Singh S, et al. ACC deaminase-containing plant growth-promoting rhizobacteria protect Papaver somniferum from downy mildew. J Appl Microbiol. 2017 May;122(5):1286–98.
Shen M, Kang YJ, Wang HL, Zhang XS, Zhao QX. Effect of Plant Growth-promoting Rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation. J Gen Appl Microbiol. 2012;58(4):253–62.
Kamala-Kannan S, Lee KJ, Park SM, Chae JC, Yun BS, Lee YH, et al. Characterization of ACC deaminase gene in Pseudomonas entomoph- 32 MICROCIENCIA Investigación, Desarrollo e Innovación, Vol 9 - 2020 ila strain PS-PJH isolated from the rhizosphere soil. J Basic Microbiol. 2010;50(2):200–5.
Teng S, Liu Y, Zhao L. [Isolation, identification and characterization of ACC deaminase-containing en dophytic bacteria from halophyte Suaeda salsa]. Wei Sheng Wu Xue Bao. 2010 Nov;50(11):1503–9.
Gamalero E, Berta G, Massa N, Glick BR, Lingua G. Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. J Appl Microbiol. 2010;108(1):236– 45.
Karthikeyan S, Zhou Q, Zhao Z, Kao C., Tao Z, Robinson H, et al. Crystal structure of 1-Aminocyclopropane-1-carboyxlate Deaminase from Pseudomonas. Protein Data Bank. 2004;
Saleem M, Arshad M, Hussain S, Bhatti AS. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol. 2007;34(10):635–48.