Scientometric Analysis of the Antimicrobial Properties of Copper (cu⁺) Nanoparticles in the Postharvest Treatment of Agricultural Crops

Autores

  • Laura Valentina Aranzales Doria Universidad Nacional de Colombia
  • Elia Rosa Martínez Daza Universidad Nacional de Colombia
  • Cristina Isabel Herrera García Universidad Nacional de Colombia
  • Anderson Quintero Ocampo Universidad Nacional de Colombia

DOI:

https://doi.org/10.18041/2619-4465/interfaces.1.13395

Palavras-chave:

Copper nanoparticles, Antimicrobial properties, Postharvest, Sustainable agriculture, Scientometric analysis

Resumo

The loss of crops and postharvest products represents a global concern with direct implications for sustainable development and food security. Among the main contributing factors, phytopathogens stand out due to their persistent impact, posing a constant challenge to the agricultural sector. Although various products have been implemented to control their proliferation, conventional methods have shown significant negative impacts on ecosystem sustainability. In this context, the present study conducts a scientometric exploratory analysis using the Scopus and Web of Science (WoS) databases, to examine the potential of copper nanoparticles (CuNPs) as a sustainable alternative for postharvest treatment. A total of 1,121 documents published between 2004 and 2024 were identified and analyzed. The results reveal a steady growth in research on this topic, with a notable increase starting in 2017. China, India, and the United States lead the scientific production, while authors such as Kumar A. and Singh R. emerge as key figures in the development of green synthesis techniques and antimicrobial applications. Network analysis identified central themes such as the biosynthesis of nanoparticles, their antifungal and bactericidal activity against common pathogens, and their application in edible coatings. This study provides a structured overview of the advances in the use of CuNPs, highlighting their viability to reduce postharvest losses and promote safer and more efficient agricultural practices.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1]T. Chen, D. Ji, Z. Zhang, B. Li, G. Qin, and S. Tian, “Advances and strategies for controlling the quality and safety of postharvest fruit,” Engineering (Beijing), vol. 7, no. 8, pp. 1177–1184, Aug. 2021, doi: 10.1016/j.eng.2020.07.029.

[2]R. Kaur et al., “Pesticides: An alarming detrimental to health and environment,” Sci. Total Environ., vol. 915, no. 170113, p. 170113, Mar. 2024, doi: 10.1016/j.scitotenv.2024.170113.

[3]A. Chauhan et al., “An investigation of the antimicrobial and antioxidant efficacy of copper oxide (I) nanoparticles: A green approach from Myrica esculenta fruit extract,” Chemical Physics Impact, no. 100390, p. 100390, Nov. 2023, doi: 10.1016/j.chphi.2023.100390.

[4]E. Isiksel, A. Attar, L. Ozalp, and M. Altikatoglu Yapaoz, “A novel controlled release system Au-CuONP/P(MMAcoMAA)/chitosan nanocomposites: Synthesis, characterization, antimicrobial activity and in silico molecular docking,” Int. J. Biol. Macromol., vol. 307, no. Pt 3, p. 141985, May 2025, doi: 10.1016/j.ijbiomac.2025.141985.

[5]V. R. Suryavanshi et al., “Preparation and characterization of kodo millet starch/gum tragacanth/copper oxide nanoparticles-based antimicrobial food packaging films,” Mater. Today Commun., vol. 42, no. 111443, p. 111443, Jan. 2025, doi: 10.1016/j.mtcomm.2024.111443.

[6]A. H. Hashem et al., “Synthesis and characterization of innovative GA@Ag-CuO nanocomposite with potent antimicrobial and anticancer properties,” Sci. Rep., vol. 15, no. 1, p. 689, Jan. 2025, doi: 10.1038/s41598-024-76446-2.

[7]S. Vijayaram et al., “Applications of green synthesized metal nanoparticles - a review,” Biol. Trace Elem. Res., vol. 202, no. 1, pp. 360–386, Jan. 2024, doi: 10.1007/s12011-023-03645-9.

[8]S. Balaji, M. S. Pandian, R. Ganesamoorthy, and T. Karchiyappan, “Green synthesis of metal oxide nanoparticles using plant extracts: A sustainable approach to combat antimicrobial resistance,” Environ. Nanotechnol. Monit. Manag., vol. 23, no. 101066, p. 101066, Jun. 2025, doi: 10.1016/j.enmm.2025.101066.

[9]S. Boddu et al., “Green synthesis of copper oxide nanoparticles (CuONPs) using Ricinus communis: Efficient photocatalytic dye degradation and antibacterial applications,” Water Air Soil Pollut., vol. 236, no. 4, Apr. 2025, doi: 10.1007/s11270-025-07841-2.

[10]K. Giannousi, I. Avramidis, and C. Dendrinou-Samara, “Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans,” RSC Adv., vol. 3, no. 44, pp. 21743–21752, Oct. 2013, doi: 10.1039/C3RA42118J.

[11]G. Rana, V. K. Dhiman, S. K. Ali, A. Chauhan, M. S. Jabir, and S. Ghotekar, “Emerging developments in plant-based metal nanomaterials for diverse versatile applications - A review,” Results Chem., vol. 15, no. 102231, p. 102231, May 2025, doi: 10.1016/j.rechem.2025.102231.

[12]K. Madeshwaran and R. Venkatachalam, “Green synthesis of bimetallic ZnO–CuO nanoparticles using Annona muricata l. extract: Investigation of antimicrobial, antioxidant, and anticancer properties,” Journal of Industrial and Engineering Chemistry, vol. 140, pp. 454–467, Dec. 2024, doi: 10.1016/j.jiec.2024.06.002.

[13]K. Nishikawa and A. Murakami, “Does open access foster interdisciplinary citations? Decomposing open access citation advantage,” Scientometrics, vol. 130, no. 5, pp. 2963–2986, Apr. 2025, doi: 10.1007/s11192-025-05297-z.

[14] A. J. Britto-Berrocal and D. M. Cordoba-Rizo, “Vista de Análisis cienciométrico de la relación entre inteligencia artificial eingeniería de datos: tendencias, colaboración y evolución,” Intefaces, vol. 7, no. 2, pp. 1–17, 2024, Accessed: Jan. 12, 2025. [Online]. Available: https://revistas.unilibre.edu.co/index.php/interfaces/article/view/12714/12751

[15] S. Valencia, M. Zuluaga, M. C. Florian Pérez, K. F. Montoya-Quintero, M. S. Candamil-Cortés, and S. Robledo, “Human Gut Microbiome: A Connecting Organ Between Nutrition, Metabolism, and Health,” Int J Mol Sci, vol. 26, no. 9, Apr. 2025, doi: 10.3390/ijms26094112.

[16] S. Robledo, B. Arias, C. García, I. Durley-Torres, and M. Zuluaga, “Margaret: Streamlining research productivity analysis in Colombia with an R package for GrupLAC integration,” Issu. Sci. Technol. Libr.., no. 108, Nov. 2024, doi: 10.29173/istl2777.

[17]S. Robledo, L. Valencia, M. Zuluaga, O. A. Echeverri, and J. W. A. Valencia, “tosr: Create the Tree of Science from WoS and Scopus,” J. Sci. Res., vol. 13, no. 2, pp. 459–465, Aug. 2024, doi: 10.5530/jscires.13.2.36.

[18]G. Ren, D. Hu, E. W. C. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker, “Characterisation of copper oxide nanoparticles for antimicrobial applications,” Int. J. Antimicrob. Agents, vol. 33, no. 6, pp. 587–590, Jun. 2009, doi: 10.1016/j.ijantimicag.2008.12.004.

[19]S. Anita, T. Ramachandran, R. Rajendran, C. V. Koushik, and M. Mahalakshmi, “A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric,” Text. Res. J., vol. 81, no. 10, pp. 1081–1088, Jun. 2011, doi: 10.1177/0040517510397577.

[20]I. M. El-Nahhal, S. M. Zourab, F. S. Kodeh, M. Selmane, I. Genois, and F. Babonneau, “Nanostructured copper oxide-cotton fibers: synthesis, characterization, and applications,” Int. Nano Lett., vol. 2, no. 1, Dec. 2012, doi: 10.1186/2228-5326-2-14.

[21]O. Rubilar, M. Rai, G. Tortella, M. C. Diez, A. B. Seabra, and N. Durán, “Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications,” Biotechnol. Lett., vol. 35, no. 9, pp. 1365–1375, Sep. 2013, doi: 10.1007/s10529-013-1239-x.

[22]R. Sivaraj, P. K. S. M. Rahman, P. Rajiv, S. Narendhran, and R. Venckatesh, “Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 129, pp. 255–258, Aug. 2014, doi: 10.1016/j.saa.2014.03.027.

[23] R. Sivaraj, P. K. S. M. Rahman, P. Rajiv, H. A. Salam, and R. Venckatesh, “Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 133, pp. 178–181, Dec. 2014, doi: 10.1016/j.saa.2014.05.048.

[24]Y. Abboud et al., “Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata),” Appl. Nanosci., vol. 4, no. 5, pp. 571–576, Jun. 2014, doi: 10.1007/s13204-013-0233-x.

[25] E. Sánchez-López et al., “Metal-based nanoparticles as antimicrobial agents: An overview,” Nanomaterials (Basel), vol. 10, no. 2, p. 292, Feb. 2020, doi: 10.3390/nano10020292.

[26] P. Karami, M. P. Gashti, A. F. Martins, and N. Fereydouni, “Eco-friendly synthesis of copper nanoparticles for efficient Congo red dye removal from wastewater,” Iran J Sci, Mar. 2025, doi: 10.1007/s40995-025-01814-0.

[27]A. M. Al-Mohaimeed, M. F. El-Tohamy, and N. M. S. Moubayed, “Impact of metal nanoparticles biosynthesized using camel milk on bacterial growth and copper removal from wastewater,” Green Process. Synth., vol. 14, no. 1, Feb. 2025, doi: 10.1515/gps-2024-0192.

[28]Z. Iram et al., “Nature-inspired antimicrobial agents: Cinnamon-derived copper oxide nanoparticles for effective Aspergillus Niger control,” Curr. Microbiol., vol. 82, no. 1, p. 19, Nov. 2024, doi: 10.1007/s00284-024-04000-4.

[29]G. S. El-Sayyad et al., “An eco-friendly and cost-effective approach for the synthesis of a novel GA@CuO–ZnO nanocomposite: characterization, antimicrobial and anticancer activities,” RSC Adv., vol. 15, no. 1, pp. 513–523, 2025, doi: 10.1039/d4ra04312j.

[30] S. K. Avinashi et al., “3D nanocomposites of β-TCP-H3BO3-Cu with improved mechanical and biological performances for bone regeneration applications,” Sci. Rep., vol. 15, no. 1, p. 3224, Jan. 2025, doi: 10.1038/s41598-025-87988-4.

Publicado

2025-12-27

Edição

Seção

Artículos

Como Citar

Aranzales Doria, L. V., Martínez Daza, E. R. ., Herrera García, C. I. ., & Quintero Ocampo, A. . (2025). Scientometric Analysis of the Antimicrobial Properties of Copper (cu⁺) Nanoparticles in the Postharvest Treatment of Agricultural Crops. Interfaces, 8(1). https://doi.org/10.18041/2619-4465/interfaces.1.13395