Propuestas para enfrentar el cambio climático en Colombia: un análisis bibliométrico
Autores/as
- Saudi Yulieth Enciso Alfaro Universidad Militar Nueva Granada https://orcid.org/0000-0003-4942-136X
- Liliana Elizabeth Ruiz Acosta Universidad Militar Nueva Granada https://orcid.org/0000-0003-3323-8480
- David Andrés Camargo Mayorga Universidad Militar Nueva Granada https://orcid.org/0000-0002-5290-8251
DOI:
https://doi.org/10.18041/2619-4244/dl.33.11167Palabras clave:
Cambio climático, Colombia, Ambiente, Residuos, Empresas, SociedadResumen
La mitigación del cambio climático plantea un cambio en las decisiones que deberán emprender las instituciones gubernamentales, las empresas y la sociedad en general. El objetivo de este documento es analizar mediante bibliometría los artículos publicados por instituciones académicas y/o gubernamentales, públicas y/o privadas colombianas referentes al cambio climático y extraer las propuestas para enfrentar esta problemática en el país. Se analizaron 487 artículos publicados entre los años 2016 y 2018 mediante el software VOSviewer. Los hallazgos sugieren que las recomendaciones de implementar o modificar políticas públicas en Colombia son predominantes, sin embargo se destaca la propuesta de aldeas climáticamente inteligentes por su orientación a la integración de las comunidades con la ciencia permitiéndole a estas la comprensión del cambio climático y brindándoles herramientas para abordarlo, así como la de ecología industrial por su enfoque integrador entre el autoabastecimiento de alimentos orgánicos y la reutilización de aguas grises.
Descargas
Referencias
Aggarwal, P., Jarvis, A., Campbell, B., Zougmoré, R., Khatri-Chhetri, A., Vermeulen, S., Loboguerrero, A. M., Sebastian, L., Kinyangi, J., Bonilla-Findji, O., Radeny, M., Recha, J., Martinez-Baron, D., Ramirez-Villegas, J., Huyer, S., Thornton, P., Wollenberg, E., Hansen, J., Alvarez-Toro, P., … Yen, B. (2018). The climate-smart village approach: Framework of an integrative strategy for scaling up adaptation options in agriculture. Ecology and Society, 23(1). https://doi.org/10.5751/ES-09844-230114
Andrade-Castañeda, H. J., Arteaga-Céspedes, C. C., & Segura-Madrigal, M. A. (2017). Emisión de gases de efecto invernadero por uso de combustibles fósiles en Ibagué, Tolima (Colombia). Ciencia & Tecnología Agropecuaria, 18(1), 103-112. https://doi.org/10.21930/rcta.vol18_num1_art:561
Arias-Gaviria, J., van der Zwaan, B., Kober, T., & Arango-Aramburo, S. (2017). The prospects for Small Hydropower in Colombia. Renewable Energy, 107, 204-214. https://doi.org/10.1016/j.renene.2017.01.054
Bernard, F. L., Duczinski, R. B., Rojas, M. F., Fialho, M. C. C., Carreño, L. Á., Chaban, V. V., Vecchia, F. D., & Einloft, S. (2018). Cellulose based poly(ionic liquids): Tuning cation-anion interaction to improve carbon dioxide sorption. Fuel, 211, 76-86. https://doi.org/10.1016/j.fuel.2017.09.057
Berrouet, L. M., Machado, J., & Villegas-Palacio, C. (2018). Vulnerability of socio—ecological systems: A conceptual Framework. Ecological Indicators, 84, 632-647. https://doi.org/10.1016/j.ecolind.2017.07.051
Billette de Villemeur, E., & Leroux, J. (2019). Tradable climate liabilities: A thought experiment. Ecological Economics, 164, 106355. https://doi.org/10.1016/j.ecolecon.2019.106355
Cardenas, L. M., Franco, C. J., & Dyner, I. (2016). Assessing emissions–mitigation energy policy under integrated supply and demand analysis: The Colombian case. Journal of Cleaner Production, 112, 3759-3773. https://doi.org/10.1016/j.jclepro.2015.08.089
Chirinda, N., Arenas, L., Loaiza, S., Trujillo, C., Katto, M., Chaparro, P., Nuñez, J., Arango, J., Martinez-Baron, D., Loboguerrero, A. M., Becerra Lopez-Lavalle, L. A., Avila, I., Guzmán, M., Peters, M., Twyman, J., García, M., Serna, L., Escobar, D., Arora, D., … Barahona, R. (2017). Novel Technological and Management Options for Accelerating Transformational Changes in Rice and Livestock Systems. Sustainability, 9(11), 1891. https://doi.org/10.3390/su9111891
Cuellar, Y., Buitrago-Tello, R., & Belalcazar-Ceron, L.-C. (2016). Life cycle emissions from a bus rapid transit system and comparison with other modes of passenger transportation. CTyF - Ciencia, Tecnologia y Futuro, 6(3), 123-134. Scopus.
CMNUCC. (1992). Convención Marco de las Naciones Unidas sobre el Cambio Climático. Recuperado de: https://unfccc.int/resource/docs/convkp/convsp.pdf
De Guttry, C., Süsser, D., & Döring, M. (2019). Situating climate change: Psychological distances as tool to understand the multifaceted dimensions of climate change meanings. Geoforum, 104, 92-100. https://doi.org/10.1016/j.geoforum.2019.06.015
Duque, E., González, J., & Restrepo, J. (2017). The clean development mechanism as a means to assess the Kyoto Protocol in Colombia. International Journal of Renewable Energy Research, 7(3), 1205-1212. Scopus.
Duque, E., Patiño, J., & Veléz, L. (2016). Implementation of the ACM0002 methodology in small hydropower plants in Colombia under the Clean Development Mechanism. International Journal of Renewable Energy Research, 6(1), 21-33. Scopus.
Feng, A., & Chao, Q. (2020). An overview of assessment methods and analysis for climate change risk in China. Physics and Chemistry of the Earth, Parts A/B/C, 102861. https://doi.org/10.1016/j.pce.2020.102861
Garg, M., & Kumar, M. (2018). Identifying influential segments from word co-occurrence networks using AHP. Cognitive Systems Research, 47, 28-41. https://doi.org/10.1016/j.cogsys.2017.07.003
Gonzalez-Salazar, M. A., Venturini, M., Poganietz, W.-R., Finkenrath, M., Kirsten, T., Acevedo, H., & Spina, P. R. (2016). A general modeling framework to evaluate energy, economy, land-use and GHG emissions nexus for bioenergy exploitation. Applied Energy, 178, 223-249. https://doi.org/10.1016/j.apenergy.2016.06.039
Guarda, E. L. A. da, Domingos, R. M. A., Jorge, S. H. M., Durante, L. C., Sanches, J. C. M., Leão, M., & Callejas, I. J. A. (2020). The influence of climate change on renewable energy systems designed to achieve zero energy buildings in the present: A case study in the Brazilian Savannah. Sustainable Cities and Society, 52, 101843. https://doi.org/10.1016/j.scs.2019.101843
IPCC. (2015). Cambio Climático 2014: informe de síntesis. Recuperado de: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdf
Khavarian-Garmsir, A. R., Pourahmad, A., Hataminejad, H., & Farhoodi, R. (2019). Climate change and environmental degradation and the drivers of migration in the context of shrinking cities: A case study of Khuzestan province, Iran. Sustainable Cities and Society, 47, 101480. https://doi.org/10.1016/j.scs.2019.101480
Markkula, I., Turunen, M., & Rasmus, S. (2019). A review of climate change impacts on the ecosystem services in the Saami Homeland in Finland. Science of The Total Environment, 692, 1070-1085. https://doi.org/10.1016/j.scitotenv.2019.07.272
Martínez-Jaramillo, J. E., Arango-Aramburo, S., Álvarez-Uribe, K. C., & Jaramillo-Álvarez, P. (2017). Assessing the impacts of transport policies through energy system simulation: The case of the Medellin Metropolitan Area, Colombia. Energy Policy, 101, 101-108. https://doi.org/10.1016/j.enpol.2016.11.026
Mwongera, C., Shikuku, K. M., Twyman, J., Läderach, P., Ampaire, E., Van Asten, P., Twomlow, S., & Winowiecki, L. A. (2017). Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies. Agricultural Systems, 151, 192-203. https://doi.org/10.1016/j.agsy.2016.05.009
Navarrete, D., Sitch, S., Aragão, L. E. O. C., Pedroni, L., & Duque, A. (2016). Conversion from forests to pastures in the Colombian Amazon leads to differences in dead wood dynamics depending on land management practices. Journal of Environmental Management, 171, 42-51. https://doi.org/10.1016/j.jenvman.2016.01.037
Osorio, A. F., Ortega, S., & Arango-Aramburo, S. (2016). Assessment of the marine power potential in Colombia. Renewable and Sustainable Energy Reviews, 53, 966-977. https://doi.org/10.1016/j.rser.2015.09.057
Osorio, Andrés F., Arias-Gaviria, J., Devis-Morales, A., Acevedo, D., Velasquez, H. I., & Arango-Aramburo, S. (2016). Beyond electricity: The potential of ocean thermal energy and ocean technology ecoparks in small tropical islands. Energy Policy, 98, 713-724. https://doi.org/10.1016/j.enpol.2016.05.008
Pardo Martínez, C. I., & Alfonso P., W. H. (2018). Climate change in Colombia: A study to evaluate trends and perspectives for achieving sustainable development from society. International Journal of Climate Change Strategies and Management, 10(4), 632-652. https://doi.org/10.1108/IJCCSM-04-2017-0087
Phillips, J. (2016). The Geocybernetic Assessment Matrix (GAM)—A new assessment tool for evaluating the level and nature of sustainability or unsustainability. Environmental Impact Assessment Review, 56, 88-101. https://doi.org/10.1016/j.eiar.2015.09.003
Sanchis, I. V., Franco, R. I., Zuriaga, P. S., & Fernández, P. M. (2020). Risk of increasing temperature due to climate change on operation of the Spanish rail network. Transportation Research Procedia, 45, 5-12. https://doi.org/10.1016/j.trpro.2020.02.056
Sanyé-Mengual, E., Martinez-Blanco, J., Finkbeiner, M., Cerdà, M., Camargo, M., Ometto, A. R., Velásquez, L. S., Villada, G., Niza, S., Pina, A., Ferreira, G., Oliver-Solà, J., Montero, J. I., & Rieradevall, J. (2018). Urban horticulture in retail parks: Environmental assessment of the potential implementation of rooftop greenhouses in European and South American cities. Journal of Cleaner Production, 172, 3081-3091. https://doi.org/10.1016/j.jclepro.2017.11.103
Seguel, F., Valenzuela, S., & Sanhueza, O. (2012). Corriente Epistemológica Positivista y su Influencia en la Generación del Conocimiento. Aquichan, 12(2), 160-168.
Shaffril, H. A. M., Krauss, S. E., & Samsuddin, S. F. (2018). A systematic review on Asian’s farmers’ adaptation practices towards climate change. Science of The Total Environment, 644, 683-695. https://doi.org/10.1016/j.scitotenv.2018.06.349
Sierra, C. A., Mahecha, M., Poveda, G., Álvarez-Dávila, E., Gutierrez-Velez, V. H., Reu, B., Feilhauer, H., Anáya, J., Armenteras, D., Benavides, A. M., Buendia, C., Duque, Á., Estupiñan-Suarez, L. M., González, C., Gonzalez-Caro, S., Jimenez, R., Kraemer, G., Londoño, M. C., Orrego, S. A., … Skowronek, S. (2017). Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era. Environmental Science & Policy, 76, 40-49. https://doi.org/10.1016/j.envsci.2017.06.011
Tonmoy, F. N., Wainwright, D., Verdon-Kidd, D. C., & Rissik, D. (2018). An investigation of coastal climate change risk assessment practice in Australia. Environmental Science & Policy, 80, 9-20. https://doi.org/10.1016/j.envsci.2017.11.003
Tost, M., Hitch, M., Lutter, S., Feiel, S., & Moser, P. (2020). Carbon prices for meeting the Paris agreement and their impact on key metals. The Extractive Industries and Society. https://doi.org/10.1016/j.exis.2020.01.012
Vargas, A., Saavedra, O. R., Samper, M. E., Rivera, S., & Rodriguez, R. (2016). Latin American Energy Markets: Investment Opportunities in Nonconventional Renewables. IEEE Power and Energy Magazine, 14(5), 38-47. https://doi.org/10.1109/MPE.2016.2573862
Vargas, V., & Restrepo, I. (2018). Construction of index with artificial intelligence to evaluate vulnerability to climate change in Andean tropical micro-watersheds. Study case in Colombia. Dyna, 85(204), 194-203.
Wang, Z., Zhao, Y., & Wang, B. (2018). A bibliometric analysis of climate change adaptation based on massive research literature data. Journal of Cleaner Production, 199, 1072-1082. https://doi.org/10.1016/j.jclepro.2018.06.183
Zhou, H., Yang, Y., Chen, Y., & Zhu, J. (2018). Data envelopment analysis application in sustainability: The origins, development and future directions. European Journal of Operational Research, 264(1), 1-16. https://doi.org/10.1016/j.ejor.2017.06.023
Zomer, R. J., Bossio, D. A., Sommer, R., & Verchot, L. V. (2017). Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Scientific Reports, 7(1), 1-8. https://doi.org/10.1038/s41598-017-15794-8
Publicado
Número
Sección
Licencia
Derechos de autor 2023 Dictamen Libre
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.