Can what we eat change our genes expression?
DOI:
https://doi.org/10.18041/2390-0512/biociencias.2.9655Keywords:
Epigenetics, nutrition, Gene expression, diet, DiseaseAbstract
The study of heritable and reversible molecular processes that regulate gene expression without directly affecting DNA sequence has been called epigenetics. These molecular processes can be subject to environment-dependent variations, such as the quality of diet, which is being the subject of extensive research as it reflects a greater predisposition or protection regarding development of diseases due to the influence of specific eating habits. In this regard, some constituents of vitamins, minerals and phytochemicals are beginning to be called “epigenetic aliments” as they have the ability to modulate the expression of genes associated with disease, whereby a novel concept and therapeutic alternative such as precision nutrition arises. In this way, the programming of physiological systems could be intervened through beneficial dietary habits that impact the offspring of obese mothers up to beneficial epigenetic reprogramming in malnourished patients.
Downloads
References
Tiffon C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int J Mol Sci. 2018;19(11):3425.
Mullins A, Bresette W, Johnstone L, Hallmark B, Chilton F. Genomics in Personalized Nutrition: Can You “Eat for Your Genes”?. Nutrients. 2020;12(10): 3118
Kaspar D, Hastreiter S, Irmler M, Hrabé de Angelis M, Beckers J. Nutrition and its role in epigenetic inheritance of obesity and diabetes across generations. Mamm Genome. 2020;31(5-6):119-133
Sapienza C, Issa J. Diet, Nutrition, and Cancer Epigenetics. Annu Rev Nutr. 2016;36:665-81.
Rossnerova A, Izzotti A, Pulliero A, Bast A, Rattan S, Rossner P. The Molecular Mechanisms of Adaptive Response Related to Environmental Stress. Int J Mol Sci. 2020; 21(19):7053
Amenyah S, Ward M, Strain J, McNulty H, Hughes C, Dollin C, et al. Nutritional Epigenomics and Age-Related Disease. Curr Dev Nutr. 2020;4(7):nzaa097
Nielsen R. Molecular Signatures of Natural Selection . Annu Rev Genet . 2005; 39 : 197-218
McEwen BS, Eiland L, Hunter RG, Miller MM. Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology. 2012;62(1):3-12.
Tiffon C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int. J. Mol. Sci. 2018, 19, 3425; doi:10.3390/ijms19113425
Kaspar D , Hastreiter S, Irmler M, Hrabé de Angelis M, Beckers J. Nutrition and its role in epigenetic inheritance of obesity and diabetes across generations. Mamm Genoma. 2020 junio; 31 (5-6): 119-133.
Henikoff S, Greally JM. Epigenética, memoria celular y regulación genética . Curr Biol . 2016; 26 ( 14 ): R644-R648.
Alfaradhi MZ, Ozanne SE Developmental programming in response to maternal overnutrition Front Genet 2:27 2011
Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci. 2008; 105 (44): 17046-17049.
Hardy T , Tollefsbol T. Epigenetic diet: impact on the epigenome and cancer Epigenomics (2011) 3(4), 503–518
Fan J, Krautkramer KA, Feldman JL, Denu JM. Metabolic Regulation of Histone Post-Translational Modifications. ACS Chem Biol . 2015; 10 ( 1 ): 95-108.
Baird, J., Fisher, D., Lucas, P., Kleijnen, J., Roberts, H., and Law, C. . Being big or growing fast: systematic review of size and growth in infancy and later obesity. 2005 BMJ 331, 929.
KH Pietiläinen, K Ismail, E Järvinen , S Heinonen , M Tummers , S Bollepalli. DNA methylation and gene expression patterns in adipose tissue differ significantly within young adult monozygotic BMI-discordant twin pairs. International Journal of Obesity (2016) 654 – 66
Schwenk RW, Vogel H, Schurmann A. Genetic and epigenetic control of metabolic health. Mol Metab 2013;2:337–47
Vvan Dijk SJ, Tellam RL, Morrison JL, Muhlhausler BS, Molloy PL. Recent developments on the role of epigenetics in obesity and metabolic disease. Clin Epigenetics 2015;7:66.
Barres R, Zierath JR. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat Rev Endocrinol 2016;12:441–51.
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012;13:484–92
Liu L, Zheng LD, Donnelly SR, Emont MP, Wu J, Cheng Z. Isolation of mouse stromal vascular cells for monolayer culture. Methods Mol Biol 2017;1566:9–16
Deiuliis JA. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes 2016; 40:88–101
Hjort L, Jorgensen SW, Gillberg L, Hall E, Brons C, Frystyk J, et al. 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner. Clin Epigenetics 2017;9:40
Mudaliar U, Zabetian A, Goodman M, Echouffo-Tcheugui JB, Albright AL, Gregg EW, et al. Cardiometabolic risk factor changes observed in diabetes prevention programs in US settings: a systematic review and meta-analysis. PLoS Med 2016; 13:e1002095.
Hjort L, Jorgensen SW, Gillberg L, Hall E, Brons C, Frystyk J, et al. 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner. Clin Epigenetics 2017; 9:40
Chilton FH, Dutta R, Reynolds LM, Sergeant S, Mathias RA, Seeds MC. Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases. Nutrients. 2017 Oct 25;9(11):1165.
Chilton FH, Murphy RC, Wilson BA, Sergeant S, Ainsworth H, Seeds MC, Mathias RA. Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients. 2014 May 21;6(5):1993-2022.
Malcomson, F.C.; Mathers, J.C. Nutrition, epigenetics and health through life. Nutr. Bull. 2017, 42, 254–265.
Tobi EW, Slieker RC, Luijk R, Dekkers KF, Stein AD, Xu KM, et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci Adv. 2018 Jan 31;4(1): eaao4364.
Meeran SM, Ahmed A, Tollefsbol TO. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics. 2010 Dec 1;1(3-4):101-116.
Blanco-Gómez A, Castillo-Lluva S, Del Mar Sáez-Freire M, Hontecillas-Prieto L, Mao JH, Castellanos-Martín A, Pérez-Losada J. Missing heritability of complex diseases: Enlightenment by genetic variants from intermediate phenotypes. Bioessays. 2016 Jul;38(7):664-73.
Choi SW, Friso S. Epigenetics: A New Bridge between Nutrition and Health. Adv Nutr. 2010 Nov;1(1):8-16.
Roseboom TJ, van der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Bleker OP. Plasma lipid profiles in adults after prenatal exposure to the Dutch famine. Am J Clin Nutr. 2000 Nov;72(5):1101-6.
Ravelli ACJ, van der Meulen JHP, Osmond C, Barker DJP, Bleker OP. Infant feeding and adult glucose tolerance, lipid profile, blood pressure, and obesity. Arch Dis Child 2000;82:248–52.
Stover PJ, Caudill MA. Genetic and epigenetic contributions to human nutrition and health: managing genome-diet interactions. J Am Diet Assoc. 2008 Sep;108(9):1480-7.
Kang JX. The coming of age of nutrigenetics and nutrigenomics. J Nutrigenet Nutrigenomics. 2012;5(1):I-II.
Remely, M.; Stefanska, B.; Lovrecic, L.; Magnet, U.; Haslberger, A.G. Nutriepigenomics: The role of nutrition in epigenetic control of human diseases. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 328–333.
Barker, D.J. Developmental origins of adult health and disease. J. Epidemiol. Community Health 2004, 58, 114–115.
Wankhade, U.D.; Zhong, Y.; Kang, P.; Alfaro, M.; Chintapalli, S.V.; Thakali, K.M.; Shankar, K. Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations. PLoS ONE 2017, 12, e0175675.
Zhou, D.; Pan, Y.X. Pathophysiological basis for compromised health beyond generations: Role of maternal high-fat diet and low-grade chronic inflammation. J. Nutr. Biochem. 2015, 26, 1–8.
Bordoni, L.; Gabbianelli, R.; Laura, B.; Gabbianelli, R. Primers on nutrigenetics and nutri(epi)genomics: Origins and development of precision nutrition. Biochimie 2019, 160, 156–171.
Ideraabdullah F, Zeisel S. Dietary modulation of the epigenome. Physiol Rev. 2018;98: 667–695
Stover PJ, James WPT, Krook A, Garza C. Emerging concepts on the role of epigenetics in the relationships between nutrition and health. J Intern Med. 2018;284(1):37–49.
Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol. 2019; 15(6): 327–345
Amenyah S, Ward M, Strain J, McNulty H, Hughes C, Dollin C, et al. Nutritional Epigenomics and Age-Related Disease. Curr Dev Nutr. 2020;4(7):1-16
Porter K, Hoey L, Hughes CF, Ward M, McNulty H. Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients 2016;8(11):725
Lai WKM, Pugh BF. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol. 2017;18: 548–562
Nash AJ, Mandaviya PR, Dib MJ, Uitterlinden AG, van Meurs J, Heil SG, et al. Interaction between plasma homocysteine and the MTHFR c.677C > T polymorphism is associated with site-specific changes in DNA methylation in humans. FASEB J. 2019;33(1):833-843.
Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20:59–607
Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: understanding the specificity. Ann NY Acad Sci. 2016;1363(1):91–8.
Fiorito G, Guarrera S, Valle C, Ricceri F, Russo A, Grioni S, Mattiello A, Di Gaetano C, Rosa F, Modica F, et al. B-vitamins intake, DNA- methylation of one carbon metabolism and homocysteine pathway genes and myocardial infarction risk: The EPICOR study. Nutr Metab Cardiovasc Dis 2014;24(5):483–8.
Holoch D, Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet. 2015; 16: 71– 84
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Biociencias

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios<. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
-
NoComercial — No puede utilizar el material para una finalidad comercial.
-
CompartirIgual — Si remezcla, transforma o crea a partir del material, deberá difundir sus contribuciones bajo la misma licencia que el original.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.