Matriz extracelular de la submucosa de intestino delgado (mec- sid; sid) como biomaterial versátil en medicina regenerativa basada en ingeniería de tejidos
Autores/as
- Duverney Gaviria Arias Universidad Libre
- Víctor Manuel Castaño Biotriskel
- Lina Janeth Arteaga Valencia ESE Hospital Universitario San Jorge
Palabras clave:
Reparación de tejidos, matriz extracelular, Biomateriales, Ingeniería de tejidos, Propiedades fisicoquímicasResumen
Durante las últimas décadas, la submucosa del intestino delgado (SID), una matriz extracelular descelularizada (MEC) de origen natural, ha atraído atención en la reparación de tejidos porque puede proporcionar abundantes factores bioactivos y un microambiente biomimético de tres dimensiones para inducir las funciones celulares deseadas.
En este artículo se revisan las últimas investigaciones sobre SID, que se centran en los siguientes aspectos: superioridad principal como una notable bioactividad, baja inmunogenicidad, reabsorbibilidad y capacidad de recelularización. Se reporta como la adhesión, proliferación, migración y diferenciación de las células se ve influenciada cuando son depositadas sobre este soporte, debido a sus características. Se presenta el gran potencial de este biomaterial para resolver los problemas de cuello de botella que se encuentran en la reparación de varios tejidos, convirtiéndola en un excelente biomaterial para uso en medicina regenerativa basada en ingeniería de tejidos.
Descargas
Referencias
Langer R, Vacanti J. Tissue engineering. Science (80- ) [Internet]. 1993 May 14;260(5110):920–6. Available from: https://www.sciencemag.org/lookup/ doi/10.1126/science.8493529
Kundu B, Kundu S. Osteogenesis of human stem cells in silk biomaterial for regenerative therapy. Prog Polym Sci. 2010;35:1116–27.
Seal B, Otero T, Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R. 2001;34:147–230.
Gaviria D, Caballero L. Uso de biomateriales a partir de la fibroína de gusano de seda (Bombyx mori L.) para procesos de medicina re-generativa basada en ingeniería de tejidos. Revis-ta Médica de Risaralda. 2015;21(1):38–47.
Black J. The education of the biomaterialist: report of a survey, 1980-81. J Biomed Mater Res [Internet]. 1982 Mar;16(2):159–67. Available from: http://www.ncbi.nlm.nih. gov/pubmed/7061534
Kalita SJ. Nanostructured Biomaterials. In 2008. p. 168–219. Available from: http:// link.springer.com/10.1007/978-0-387- 48805-9_4
Helmus MN, Gibbons DF, Cebon D.Biocompatibility:MeetingaKey Functional Requirement of Next- Generation Medical Devices. Toxicol Pathol [Internet]. 2008 Jan 1;36(1):70–80. Available from: http://journals.sagepub. com/doi/10.1177/0192623307310949
Tathe A, Ghodke M, Nikalje AP. A brief review: Biomaterials and their apllication. Int J Pharm Pharm Sci. 2010;2(SUPPL. 4):19–23.
Nair L, Laurencin C. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.
Sharma S, Srivastava D, Grover S, Sharma V. Biomaterials in tooth tissue engineering: a review. J Clin Diagn Res [Internet]. 2014 Jan;8(1):309–15. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/24596804
Kundu B, Rajkhowa R, Kundu S, Wang X. Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews. 2013.
Caballero Mendez L, Rivera Cano J, Gaviria Arias D. Evaluación de la Fibroína de Seda como Biomaterial de Soporte para el Crecimiento de Células Mesenquimales Estromales de Pulpa Dental. ARS MEDICA Rev Ciencias Médicas [Internet]. 2016 Jun 2;41(1):5. Available from: http://www. arsmedica.cl/index.php/MED/article/ view/41
Xu R, Boudreau A, Bissell MJ. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev [Internet]. 2009 Jun;28(1–2):167–76. Available from: http://www.ncbi.nlm.nih. gov/pubmed/19160017
Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol [Internet]. 1982 Nov 7;99(1):31–68. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/6892044 Almalki SG, Agrawal DK. Effects of matrix metalloproteinases on the fate of mesenchymal stem cells. Stem Cell Res Ther [Internet]. 2016;7(1):129. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/27612636
Dziki JL, Giglio RM, Sicari BM, Wang DS, Gandhi RM, Londono R, et al. The Effect of Mechanical Loading Upon Extracellular Matrix Bioscaffold-Mediated Skeletal Muscle Remodeling. Tissue Eng Part A [Internet]. 2018;24(1–2):34–46. Available from: http://www.ncbi.nlm.nih. gov/pubmed/28345417
Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem [Internet]. 2013 Apr 12;288(15):10819–29. Available from: http://www.ncbi.nlm.nih. gov/pubmed/23423382
Kufaishi H, Alarab M, Drutz H, Lye S, Shynlova O. Static Mechanical Loading Influences the Expression of Extracellular Matrix and Cell Adhesion
Proteins in Vaginal Cells Derived From Premenopausal Women With Severe Pelvic Organ Prolapse. Reprod Sci [Internet]. 2016;23(8):978–92. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/26823071
Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer [Internet]. 2009 Feb;9(2):108– 22. Available from: http://www.ncbi.nlm. nih.gov/pubmed/19165226
Linskens MH, Feng J, Andrews WH, Enlow BE, Saati SM, Tonkin LA, et al. Cataloging altered gene expression in young and senescent cells using enhanced differential display. Nucleic Acids Res [Internet]. 1995 Aug 25;23(16):3244–51. Available from: http://www.ncbi.nlm.nih. gov/pubmed/7667101
Sicari BM, Johnson SA, Siu BF, Crapo PM, Daly KA, Jiang H, et al. The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials [Internet]. 2012 Aug;33(22):5524–33. Available from: http://www.ncbi.nlm.nih. gov/pubmed/22575834
Chen J, Xu J, Wang A, Zheng M. Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev Med Devices [Internet]. 2009 Jan;6(1):61–73. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/19105781
Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B [Internet]. 2019;7(33):5038– 55. Available from: http://www.ncbi.nlm. nih.gov/pubmed/31432871
Shi L, Ronfard V. Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review. Int J Burns Trauma [Internet]. 2013;3(4):173–9. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/24273692%0Ahttp://www.
pubmedcentral.nih.gov/articlerender.
fcgi?artid=PMC3828736
Lindberg K, Badylak SF. Porcine small
intestinal submucosa (SIS): a bioscaffold supportinginvitroprimaryhuman epidermal cell differentiation and synthesis of basement membrane proteins. Burns [Internet]. 2001 May;27(3):254–66. Available from: http://www.ncbi.nlm.nih. gov/pubmed/11311519
USP Monographs: Small Intestinal Submucosa Wound Matrix [Internet]. [cited 2021 Jun 4]. Available from: http://www.pharmacopeia.cn/v29240/ usp29nf24s0_m541.html
Ji Y, Zhou J, Sun T, Tang K, Xiong Z, Ren Z, et al. Diverse preparation methods for small intestinal submucosa (SIS): Decellularization, components, and structure. J Biomed Mater Res - Part A. 2019;107(3):689–97.
McPherson TB, Badylak SF. Characterization of Fibronectin Derived from Porcine Small Intestinal Submucosa. Tissue Eng [Internet]. 1998 Mar;4(1):75– 83. Available from: https://www. liebertpub.com/doi/10.1089/ten.1998.4.75
Hurst RE, Bonner RB. Mapping of the distribution of significant proteins and proteoglycans in small intestinal submucosa by fluorescence microscopy. J Biomater Sci Polym Ed [Internet]. 2001;12(11):1267–79. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/11853391
Hodde JP, Badylak SF, Brightman AO, Voytik-Harbin SL. Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. Tissue Eng [Internet]. 1996;2(3):209–17. Available from: http://www.ncbi.nlm.nih. gov/pubmed/19877943
Mulloy B, Rider CC. Cytokines and proteoglycans: an introductory overview. Biochem Soc Trans [Internet]. 2006 Jun;34(Pt 3):409–13. Available from: http://www.ncbi.nlm.nih.gov/
Baum CL, Arpey CJ. Normal cutaneous
wound healing: clinical correlation with cellular and molecular events. Dermatol Surg [Internet]. 2005 Jun;31(6):674–86; discussion 686. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/15996419
Gallo RL. Proteoglycans and cutaneous vascular defense and repair. J Investig dermatology Symp Proc [Internet]. 2000 Dec;5(1):55–60. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/11147676
Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem [Internet]. 1997 Dec 15;67(4):478–91. Available from: http://www.ncbi.nlm.nih. gov/pubmed/9383707
Suckow MA, Voytik-Harbin SL, Terril LA, Badylak SF. Enhanced bone regeneration using porcine small intestinal submucosa. J Invest Surg [Internet]. 1999;12(5):277– 87. Available from: http://www.ncbi.nlm. nih.gov/pubmed/10599003
McDevitt CA, Wildey GM, Cutrone RM. Transforming growth factor-beta1 in a sterilized tissue derived from the pig small intestine submucosa. J Biomed Mater Res A [Internet]. 2003 Nov 1;67(2):637–40. Available from: http://www.ncbi.nlm.nih. gov/pubmed/14566807
Wang Y, Chen P, Qin J. Development of Small Intestinal Submucosa as Biomaterial in Tissue Engineering. IOP Conf Ser Mater Sci Eng [Internet]. 2019 Mar 19;484:012042. Available from: https:// iopscience.iop.org/article/10.1088/1757- 899X/484/1/012042
Bissell MJ, Aggeler J. Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog Clin Biol Res [Internet]. 1987;249:251–62. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/3671428
Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue
architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol [Internet]. 2006;22:287–309. Available from: http://www.ncbi.nlm.nih. gov/pubmed/16824016
Hodde J, Record R, Tullius R, Badylak S. Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix. Biomaterials [Internet]. 2002 Apr;23(8):1841–8. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/11950054
Badylak S, Liang A, Record R, Tullius R, Hodde J. Endothelial cell adherence to small intestinal submucosa: an acellular bioscaffold. Biomaterials [Internet]. 1999 Dec;20(23–24):2257–63. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/10614932
Hurst RE, Kyker KD, Bonner RB, Bowditch RD, Hemstreet GP. Matrix-dependent plasticity of the malignant phenotype of bladder cancer cells. Anticancer Res [Internet]. 23(4):3119–28. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/12926044
Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium [Internet]. 2001;8(1):11–24. Available from: http://www.ncbi.nlm.nih. gov/pubmed/11409848
Cadena C, Tabima D BJ. TENSILE MECHANICAL PROPERTIES OF PORCINE SMALL INTESTINAL SU... : ASAIO Journal. ASAIO Bioeng Eng Abstr [Internet]. 2005 [cited 2021 Jun 5];51(2):10A. Available from: https://journals.lww.com/asaiojournal/ Fulltext/2005/03000/Tensile_Mechanical_ Properties_of_Porcine_Small.37.aspx
Aachoui Y, Ghosh SK. Extracellular matrix from porcine small intestinal submucosa (SIS) as immune adjuvants. PLoS One. 2011;6(11).
Hauser S, Bastian PJ, Fechner G, Müller SC. Small intestine submucosa in urethral stricture repair in a consecutive series. Urology [Internet]. 2006 Aug;68(2):263–6. Available from: http://www.ncbi.nlm.nih. gov/pubmed/16904431
Knapp PM, Lingeman JE, Siegel YI, Badylak SF, Demeter RJ. Biocompatibility of small-intestinal submucosa in urinary tract as augmentation cystoplasty graft and injectable suspension. J Endourol [Internet]. 1994 Apr;8(2):125–30. Available from: http://www.ncbi.nlm.nih. gov/pubmed/8061669
Liatsikos EN, Dinlenc CZ, Kapoor R, Bernardo NO, Pikhasov D, Anderson AE, et al. Ureteral reconstruction: small intestine submucosa for the management of strictures and defects of the upper third of the ureter. J Urol [Internet]. 2001 May;165(5):1719–23. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/11342963
Smith TG, Gettman M, Lindberg G, Napper C, Pearle MS, Cadeddu JA. Ureteral replacement using porcine small intestine submucosa in a porcine model. Urology [Internet]. 2002 Nov;60(5):931– 4. Available from: http://www.ncbi.nlm. nih.gov/pubmed/12429340
MacLeod TM, Sarathchandra P, Williams G, Sanders R, Green CJ. Evaluation of a porcine origin acellular dermal matrix and small intestinal submucosa as dermal replacements in preventing secondary skin graft contraction. Burns [Internet]. 2004 Aug;30(5):431–7. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/15225907
Ueno T, Pickett LC, de la Fuente SG, Lawson DC, Pappas TN. Clinical application of porcine small intestinal submucosa in the management of infected or potentially contaminated abdominal defects. J Gastrointest Surg [Internet]. 2004 Jan;8(1):109–12. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/14746842
Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium [Internet]. 2001;8(1):11–24.
Available from: http://www.ncbi.nlm.nih.
gov/pubmed/11409848
Sutherland RS, Baskin LS, Hayward SW,
Cunha GR. Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J Urol [Internet]. 1996 Aug;156(2 Pt 2):571–7. Available from: http://www. ncbi.nlm.nih.gov/pubmed/8683736
Gastel JA, Muirhead WR, Lifrak JT, Fadale PD, Hulstyn MJ, Labrador DP. Meniscal tissue regeneration using a collagenous biomaterial derived from porcine small intestine submucosa. Arthroscopy [Internet]. 2001 Feb;17(2):151–9. Available from: http://www.ncbi.nlm.nih. gov/pubmed/11172244
Schlegel TF, Hawkins RJ, Lewis CW, Motta T,TurnerAS.Theeffectsofaugmentation with Swine small intestine submucosa on tendon healing under tension: histologic and mechanical evaluations in sheep. Am J Sports Med [Internet]. 2006 Feb;34(2):275–80. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/16210577
Liang R, Woo SL-Y, Takakura Y, Moon DK, Jia F, Abramowitch SD. Long-term effects of porcine small intestine submucosa on the healing of medial collateral ligament: a functional tissue engineering study. J Orthop Res [Internet]. 2006 Apr;24(4):811–9. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/16514641
Li M, Zhang C, Cheng M, Gu Q, Zhao J. Small intestinal submucosa: A potential osteoconductive and osteoinductive biomaterial for bone tissue engineering [Internet]. Vol. 75, Materials Science and Engineering C. Elsevier B.V; 2017. 149–156 p. Available from: http://dx.doi. org/10.1016/j.msec.2017.02.042
Daei N, Ahmadi-Noorbakhsh S. Comment on “effect of Multilaminate Small Intestinal Submucosa as a Barrier Membrane on Bone Formation in a Rabbit Mandible Defect Model.” Biomed Res Int. 2020;2020.
Wang M, Li BW, Wang SW, Liu YH. [Preparation and osteogenic effect study of small intestinal submucosa sponge]. Beijing Da Xue Xue Bao [Internet]. 2020 Oct 18;52(5):952–8. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/33047736
Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater [Internet]. 2009;5(1):1– 13. Available from: http://dx.doi. org/10.1016/j.actbio.2008.09.013
Badylak SF, Freytes DO, Gilbert TW. Reprint of: Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater [Internet]. 2015 Sep;23 Suppl:S17-26. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/26235342
Voytik-Harbin SL, Brightman AO, Waisner BZ, Robinson JP, Lamar CH. Small Intestinal Submucosa: A Tissue- Derived Extracellular Matrix That Promotes Tissue-Specific Growth and Differentiation of Cells in Vitro. Tissue Eng [Internet]. 1998 Jun;4(2):157–74. Available from: https://www.liebertpub. com/doi/10.1089/ten.1998.4.157
Peel SAF, Chen H, Renlund R, Badylak SF, Kandel RA. Formation of a SIS–Cartilage Composite Graft in Vitro and Its Use in the Repair of Articular Cartilage Defects. Tissue Eng [Internet]. 1998 Jun;4(2):143– 55. Available from: https://www.liebertpub. com/doi/10.1089/ten.1998.4.143
Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D, OASIS Venus Ulcer Study Group. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg [Internet]. 2005 May;41(5):837–43. Available from: http://www.ncbi.nlm.nih. gov/pubmed/15886669
Chang J, DeLillo N, Khan M, Nacinovich MR. Review of small intestine submucosa extracellular matrix technology in multiple
difficult-to-treat wound types. Wounds a Compend Clin Res Pract [Internet]. 2013 May;25(5):113–20. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/25866891
Romanelli M, Dini V, Bertone M, Barbanera S, Brilli C. OASIS wound matrix versus Hyaloskin in the treatment of difficult- to-heal wounds of mixed arterial/venous aetiology. Int Wound J [Internet]. 2007 Mar;4(1):3–7. Available from: http://www. ncbi.nlm.nih.gov/pubmed/17425543
Romanelli M, Dini V, Bertone MS. Randomized comparison of OASIS wound matrix versus moist wound dressing in the treatment of difficult-to-heal wounds of mixed arterial/venous etiology. Adv Skin Wound Care [Internet]. 2010 Jan;23(1):34– 8. Available from: http://www.ncbi.nlm. nih.gov/pubmed/20101114
Cuenca-pardo J, Peralta-conde D. Quemaduras en cara tratadas con escisión temprana y cubiertas con matriz acelular. 2011;21(1):11–9.
Salgado RM, Bravo L, García M, Melchor JM, Krötzsch E. Histomorphometric analysis of early epithelialization and dermal changes in mid-partial-thickness burn wounds in humans treated with porcine small intestinal submucosa and silver-containing hydrofiber. J Burn Care Res [Internet]. 35(5):e330-7. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/24823330
Barachetti L, Zanni M, Stefanello D, Rampazzo A. Use of four-layer porcine small intestinal submucosa alone as a scaffold for the treatment of deep corneal defects in dogs and cats: preliminary results. Vet Rec [Internet]. 2020;186(19):e28. Available from: http://www.ncbi.nlm.nih. gov/pubmed/31937546
71. Bussieres M, Krohne SG, Stiles J, Townsend WM. The use of porcine small intestinal submucosa for the repair of full- thickness corneal defects in dogs, cats and horses. Vet Ophthalmol [Internet]. 7(5):352–9. Available from: http://www.
Revista Cultura del Cuidado. Vol. 18 N° 2, junio a diciembre de 2021. ISSN: 1794-5232 / ISSN E: 2665-1262. ncbi.nlm.nih.gov/pubmed/15310296
Griguer F, Raymond I, Regnier A. Preliminary evaluation of the biocompatibility of the small intestinal submucosa (SIS) biomaterial with the rabbit cornea. Rev Med Vet (Toulouse).
;152(8–9):597–604.
Bejjani GK, Zabramski J. Safety and efficacy
of the porcine small intestinal submucosa dural substitute: Results of a prospective multicenter study and literature review. J Neurosurg. 2007;106(6):1028–33.
He S-K, Guo J-H, Wang Z, Zhang Y, Tu Y-H, Wu S-Z, et al. Efficacy and safety of small intestinal submucosa in dural defect repair in a canine model. Mater Sci Eng C Mater Biol Appl [Internet]. 2017 Apr 1;73:267–74. Available from: http://www. ncbi.nlm.nih.gov/pubmed/28183608
Smith RM, Wiedl C, Chubb P, Greene CH. Role of small intestine submucosa (SIS) as a nerve conduit: Preliminary report. J Investig Surg. 2004;17(6):339–44.
Shim SW, Kwon DY, Lee BN, Kwon JS, Park JH, Lee JH, et al. Evaluation of small intestine submucosa and poly(caprolactone-co-lactide) conduits for peripheral Nerve Regeneration. Tissue Eng - Part A. 2015;21(5–6):1142–51.
Roeder R, Wolfe J, Lianakis N, Hinson T, Geddes LA, Obermiller J. Compliance, elastic modulus, and burst pressure of small-intestine submucosa (SIS), small- diameter vascular grafts. J Biomed Mater Res [Internet]. 1999 Oct;47(1):65–70. Available from: https://onlinelibrary. wiley.com/doi/10.1002/(SICI)1097- 4636(199910)47:1%3C65::AID- JBM9%3E3.0.CO;2-F
Boyd WD, Johnson WE, Sultan PK, Deering TF, Matheny RG. Pericardial reconstruction using an extracellular matrix implant correlates with reduced risk of postoperative atrial fibrillation in coronary artery bypass surgery patients. Heart Surg Forum [Internet]. 2010 Oct;13(5):E311-6. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/20961831 79. Lam MT, Wu JC. Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev Cardiovasc Ther [Internet]. 2012 Aug 10;10(8):1039–49. Available from: http://www.tandfonline.
com/doi/full/10.1586/erc.12.99
Chang CW, Petrie T, Clark A, Lin X, Sondergaard CS, Griffiths LG. Mesenchymal Stem Cell Seeding of Porcine Small Intestinal Submucosal Extracellular Matrix for Cardiovascular Applications. PLoS One [Internet]. 2016;11(4):e0153412. Available from: http://www.ncbi.nlm.nih.
gov/pubmed/27070546
Quarti A, Nardone S, Colaneri M, Santoro
G, Pozzi M. Preliminary experience in the use of an extracellular matrix to repair congenital heart diseases. Interact Cardiovasc Thorac Surg [Internet]. 2011 Dec;13(6):569–72. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/21979987
Witt RG, Raff G, Van Gundy J, Rodgers- Ohlau M, Si MS. Short-term experience of porcine small intestinal submucosa patches in paediatric cardiovascular surgery. Eur J Cardio-thoracic Surg. 2013;44(1):72–6.
Mosala Nezhad Z, Poncelet A, De Kerchove L, Gianello P, Fervaille C, El Khoury G. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: A systematic review. Interact Cardiovasc Thorac Surg. 2016;22(6):839– 50.
Yanagawa B, Rao V, Yau TM, Cusimano RJ. Initial experience with intraventricular repair using CorMatrix extracellular matrix. Innovations (Phila) [Internet]. 8(5):348–52. Available from: http://www. ncbi.nlm.nih.gov/pubmed/24346583
Gerdisch MW, Boyd WD, Harlan JL, Richardson JB, Flack JE, Palafox BA, et al. Early experience treating tricuspid valve endocarditis with a novel extracellular matrix cylinder reconstruction. J Thorac Cardiovasc Surg [Internet]. 2014 Dec;148(6):3042–8. Available from: http://
www.ncbi.nlm.nih.gov/pubmed/25175957 86.Sündermann SH, Rodriguez Cetina Biefer H, Emmert MY, Falk V. Use of extracellular matrix materials in patients with endocarditis. Thorac Cardiovasc Surg [Internet]. 2014 Feb;62(1):76–9. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/23143861
DuBose JJ, Azizzadeh A. Utilization of a
tubularized cormatrix extracellular matrix for repair of an arteriovenous fistula aneurysm. Ann Vasc Surg [Internet]. 2015 Feb;29(2):366.e1-4. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/25463348
Yanagawa B, Rao V, Yau TM, Cusimano RJ. Potential myocardial regeneration with CorMatrix ECM: a case report. J Thorac Cardiovasc Surg [Internet]. 2014 Apr;147(4):e41-3. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/24529732
Wang Z-L, Wu S-Z, Li Z-F, Guo J-H, Zhang Y, Pi J-K, et al. Comparison of small intestinal submucosa and polypropylene mesh for abdominal wall defect repair. J Biomater Sci Polym Ed [Internet]. 2018 Apr 13;29(6):663–82. Available from: https:// www.tandfonline.com/doi/full/10.1080/092 05063.2018.1433419
Clarke KM, Lantz GC, Salisbury SK, Badylak SF, Hiles MC, Voytik SL. Intestine submucosa and polypropylene mesh for abdominal wall repair in dogs. J Surg Res. 1996;60(1):107–14.
Al-Sahaf O, El-Masry S. The use of porcine small intestinal submucosa mesh (SURGISIS) as a pelvic sling in a man and a woman with previous pelvic surgery: Two case reports. J Med Case Rep. 2009;3(October 2006):1–3.
Oelschlager BK, Barreca M, Chang L, Pellegrini CA. The use of small intestine submucosa in the repair of paraesophageal hernias: Initial observations of a new technique. Am J Surg. 2003;186(1):4–8.