Infecciones asociadas a la atención en salud en pacientes oncológicos
PDF

Palabras clave

Resistencia
IAAS
Cáncer
E. coli
K. pneumoniae
P. aeruginosa
A. baumannii

Resumen

Introducción: Las infecciones asociadas a la atención en salud (IAAS) son aquellas infecciones que el paciente adquiere mientras recibe tratamiento y en quien la infección no se había manifestado ni estaba en periodo de incubación en el momento de ingreso. Las IAAS son causadas por bacterias, hongos y virus. Por su parte, la resistencia a los antimicrobianos se produce cuando los microorganismos sufren cambios que no permiten la acción de los medicamentos empleados para tratar las infecciones. Debido a esto, la emergencia y rápida diseminación de infecciones por microorganismos resistentes a los antimicrobianos se considera un problema de salud pública que se asocia con la estancia hospitalaria, morbimortalidad y altos costos para el sistema de salud. En adición a esta problemática, las complicaciones infecciosas constituyen una de las causas más importantes de morbimortalidad en los pacientes oncológicos. Actualmente, las mortalidades más altas se encuentran asociadas a enterobacterias y P. aeruginosa. Es por esto, que el conocimiento adecuado de las infecciones en los pacientes oncológicos y su correcto manejo y prevención son determinantes para reducir sus complicaciones. Método: búsqueda de literatura en bases de datos indexadas. Resultados: En esta revisión se discute la importancia del estudio de las IAAS, las principales bacterias Gram negativas causantes de IAAS en pacientes oncológicos, el uso de antimicrobianos y los principales mecanismos de resistencia antimicrobiana.Conclusión: El estudio y entendimiento de la resistencia antimicrobiana en los procesos infecciosos de pacientes oncológicos, como las IAAS, son indispensables para el control, manejo y prevención de estas infecciones, con el fin de mejorar los tratamientos de los pacientes.

https://doi.org/10.18041/2323-0320/microciencia.0.2017.3663
PDF

Citas

1. Unahalekhaka, A. Epidemiología de las infecciones asociadas a la atención en salud. 2014; Available from: http://theific.org/wp-content/uploads/2014/08/Spanish_ch3_PRESS.pdf.

2. Zembower, T.R., Epidemiology of infections in cancer patients. Cancer Treat Res, 2014. 161: p. 43-89.

3. Emmanouilides, C. and J. Glaspy, Oportunistic infections in oncologyc patients. Hematology /Oncology Clinics of North America, 1996. 10(4): p. 841-861.

4. Klastersky, J. and M. Aoun, Opportunistic infections in patients with cancer. Ann Oncol, 2004. 15 Suppl 4: p. iv329-35.

5. Luyt, C.-E., et al., Antibiotic stewardship in the intensive care unit. Critical Care, 2014. 18.

6. Shorr, A.F., Review of studies of the impact on Gram-negative bacterial resistance on outcomes in the intensive care unit. Crit Care Med, 2009. 37(4): p. 1463-9.

7. Wiles, T.J., R.R. Kulesus, and M.A. Mulvey, Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol, 2008. 85(1): p. 11-9.

8. Croxen, M.A. and B.B. Finlay, Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol, 2010. 8(1): p. 26-38.

9. Nicolas-Chanoine, M.H., X. Bertrand, and J.Y. Madec, Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev, 2014. 27(3): p. 543-74.

10. Gupta, V., An update on newer beta-lactamases. Indian Journal of Medical Research, 2007. 126(5): p. 417-427.

11. Jacoby, G.A. and L.S. Munoz-Price, The New beta-lactamases The new england journal of medicine, 2005. 352: p. 380-391.

12. Perez, F., et al., The Continuing Challenge of ESBLS. Curr Opin Pharmacol, 2007. 7(5): p. 459–469.

13. Bush, K., G.A. Jacoby, and A.A. Medeiros, A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy, 1995. 39(6): p. 1211–1233.

14. Blahna, M.T., et al., The role of horizontal gene transfer in the spread of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada. J Antimicrob Chemother, 2006. 57(4): p. 666-72.

15. Datta, N. and P. Kontomichalou, Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature, 1965. 208(5007): p. 239-241.

16. Sirot, D., et al., Resistance to Beta-Lactams in Enterobacteriaceae: Distribution of Phenotypes Related to Beta-Lactamase Production Journal of International Medical Research, 1986. 14(4): p. 193-199.

17. Pitton, J., Mechanism of bacterial resistance to antibiotics. Rev Physiol, 1972. 65: p. 15–93.

18. Cué, M., M. Morejón, and R. Salup, Actualidad de las quinolonas. Revista Cubana de Farmacia, 2005. 39(1).

19. Emmerson, A. and A. Jones, The quinolones: decades of development and use. Journal of Antimicrobial Chemotherapy, 2003. 51: p. 13–20.

20. Andersson, M. and A. MacGowan, Development of the quinolones. Journal of Antimicrobial Chemotherapy, 2003. 51: p. 1–11.

21. Michon, A., et al., Plasmidic qnrA3 Enhances Escherichia coli Fitness in Absence of Antibiotic Exposure. PLoS ONE, 2011. 6(9).

22. Kim, H.B., et al., Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrobial Agents and Chemotherapy, 2009. 53(2): p. 639–645.

23. Poirel, L. and P. Nordmann, Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect, 2006. 12(9): p. 826-36.

24. Okumura, R., et al., Quinolone induction of qnrVS1 in Vibrio splendidus and plasmid-carried qnrS1 in Escherichia coli, a mechanism independent of the SOS system. Antimicrobial Agents and Chemotherapy, 2011. 55(12): p. 942–5945.

25. Arabi, H., et al., Sulfonamide Resistance Genes (sul) M in Extended Spectrum Beta Lactamase (ESBL) and Non-ESBL Producing Escherichia coli Isolated From Iranian Hospitals. Jundishapur Journal of Microbiology, 2015. 8(7).

26. Tzouvelekis, L.S., et al., Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev, 2012. 25(4): p. 682-707.

27. Broberg, C.A., M. Palacios, and V.L. Miller, Klebsiella a long way to go towards understanding this enigmatic jet-setter. F1000Prime Reports, 2014.

28. Weiner, L.M., et al., Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infect Control Hosp Epidemiol, 2016. 37(11): p. 1288-1301.

29. Doyle, J.S., et al., Epidemiology of infections acquired in intensive care units. Semin Respir Crit Care Med, 2011. 32(2): p. 115-38.

30. Sacha, P., et al., Profiles of phenotype resistance to antibiotic other tan β-lactams in Klebsiella pneumoniae ESBLs-producers, carrying blaSHV genes. Folia Histochemica et Cytobiologica, 2010. 48(4): p. 663-666.

31. Sacha, P.T., et al., Genetic similarity and antimicrobial susceptibility of Klebsiella pneumoniae–producing carbapenemase (KPC-2) isolated in different clinical specimens received from University Hospitals in Northeastern Poland. African Journal of Microbiology Research, 2012. 6(41): p. 6888-6892.

32. McDermott, H., et al., Isolation of NDM-1-producing Klebsiella pnemoniae in Ireland. Euro Surveill, 2011.

33. Naas, T., et al., Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. Antimicrob Agents Chemother, 2008. 52(4): p. 1257-63.

34. Rodríguez, E.C., et al., Diseminación de Klebsiella pneumoniae productoras de KPC-3 en hospitales de Bogotá durante un periodo de tres años. Biomédica, 2014. 34(0): p. 224.

35. Paterson, D.L. and R.A. Bonomo, Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev, 2005. 18(4): p. 657-86.

36. Jacoby, G.A., et al., Temporal appearance of plasmid-mediated quinolone resistance genes. Antimicrob Agents Chemother, 2009. 53(4): p. 1665-6.

37. Kumar, V., et al., Comparative genomics of Klebsiella pneumoniae strains with different antibiotic resistance profiles. Antimicrob Agents Chemother, 2011. 55(9): p. 4267-76.

38. Almaghrabi, R., et al., Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother, 2014. 58(8): p. 4443-51.

39. Soheili, V., et al., Investigation of Pseudomonas aeruginosa quorum-sensing signaling system for identifying multiple inhibitors using molecular docking and structural analysis methodology. Microb Pathog, 2015. 89: p. 73-8.

40. Aloush, V., et al., Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother, 2006. 50(1): p. 43-8.

41. Carmeli, Y., et al., Health and economic outcomes of antibiotic resistance in Pseudomonas aeruginosa. American Medical Association, 1999. 159: p. 1127-1132.

42. Hong, D.J., et al., Epidemiology and Characteristics of Metallo-beta-Lactamase-Producing Pseudomonas aeruginosa. Infect Chemother, 2015. 47(2): p. 81-97.

43. Bert, F., Identification of PSE and OXA beta-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. Journal of Antimicrobial Chemotherapy, 2002. 50(1): p. 11-18.

44. Martinez, E., et al., Emerging and existing mechanisms co-operate in generating diverse beta-lactam resistance phenotypes in geographically dispersed and genetically disparate Pseudomonas aeruginosa strains. J Glob Antimicrob Resist, 2013. 1(3): p. 135-142.

45. Tada, T., et al., novel 6'-n-aminoglycoside acetyltransferase AAC(6')-Iaj from a clinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother, 2013. 57(1): p. 96-100.

46. Cho, H.H., et al., Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistant Pseudomonas aeruginosa. Ann Lab Med, 2014. 34(4): p. 286-92.

47. Gould, I.M., The epidemiology of antibiotic resistance. Int J Antimicrob Agents, 2008. 32 Suppl 1: p. S2-9.

48. Seifert, H., et al., Antimicrobial susceptibility of Acinetobacter species. Antimicrobial Agents and Chemotherapy, 1993. 37(4): p. 750-753.

49. Vila, J., et al., In vitro antimicrobial production of beta-lactamases of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 1993. 37(1): p. 138-141.

50. Alsultan, A.A., et al., Acinetobacter baumannii: emergence of four strains with novel bla(OXA-51-like) genes in patients with diabetes mellitus. J Chemother, 2009. 21(3): p. 290-5.

51. Koh, T.H., et al., IMP-4 and OXA beta-lactamases in Acinetobacter baumannii from Singapore. J Antimicrob Chemother, 2007. 59(4): p. 627-32.

52. Heritier, C., et al., Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. Antimicrob Agents Chemother, 2005. 49(10): p. 4174-9.

53. Turton, J.F., et al., The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett, 2006. 258(1): p. 72-7.

54. Gordon, N.C. and D.W. Wareham, Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents, 2010. 35(3): p. 219-26.

55. Dijkshoorn, L., A. Nemec, and H. Seifert, An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol, 2007. 5(12): p. 939-51.

56. Moniri, R., et al., Molecular Epidemiology of Aminoglycosides Resistance in Acinetobacter Spp. with Emergence of Multidrug-Resistant Strains. Iranian Journal of Public Health, 2010. 39(2): p. 63-68.

57. Nemec, A., et al., Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European Acinetobacter baumannii clones. J Med Microbiol, 2004. 53(Pt 12): p. 1233-40.

58. Kong, K.F., L. Schneper, and K. Mathee, Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS, 2010. 118(1): p. 1-36.

59. Lister, J., XVI.—A Contribution to the Germ Theory of Putrefaction and other Fermentative Changes, and to the Natural History of Torulæ and Bacteria. Transactions of the Royal Society of Edinburgh, 2013. 27(03): p. 313-344.

60. Roberts, W., Studies on Biogenesis. Philosophical Transactions of the Royal Society of London, 1874. 164: p. 457-477.

61. Tyndall, J., The Optical Deportment of the Atmosphere in relation to the Phenomena of Putrefaction and Infection. Philosophical Transactions of the Royal Society of London, 1876. 166.

62. Shaikh, S., et al., Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci, 2015. 22(1): p. 90-101.

63. Straus, S.K. and R.E. Hancock, Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta, 2006. 1758(9): p. 1215-23.

64. Fisher, J.F. and S. Mobashery, Enzymology of Bacterial Resistance. Comprehensive Natural Products IIChemistry and Biology, 2010: p. 443-487.

65. Bonnet, R., Growing Group of Extended-Spectrum -Lactamases: the CTX-M Enzymes. Antimicrobial Agents and Chemotherapy, 2003. 48(1): p. 1-14.

66. Grossman, T.H., et al., Fluorocycline TP-271 Is Potent against Complicated Community-Acquired Bacterial Pneumonia Pathogens. mSphere, 2017. 2(1).

67. Yang, W., et al., TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem, 2004. 279(50): p. 52346-52.

68. Vetting, M.W., et al., A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones. Chem Biol, 2004. 11(4): p. 565-73.

69. Schwarz, S., et al., Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev, 2004. 28(5): p. 519-42.

70. Brisson-Noel, A., et al., Inactivation of lincosaminide antibiotics in Staphylococcus. Identification of lincosaminide O-nucleotidyltransferases and comparison of the corresponding resistance genes. The Journal Of Biological Chemistry, 1988. 263(31): p. 15880-15887.

71. Spratt, B.G., Resistance to Antibiotics Mediated by Target Alterations. Science, 1994. 264: p. 388-393.

72. Ruiz, J., Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother, 2003. 51(5): p. 1109-17.

73. Wolter, D.J., N.D. Hanson, and P.D. Lister, Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol Lett, 2004. 236(1): p. 137-43.

74. Bush, K. and J.F. Fisher, Epidemiological expansion, structural studies, and clinical challenges of new beta-lactamases from gram-negative bacteria. Annu Rev Microbiol, 2011. 65: p. 455-78.

75. Woodford, N., E.J. Fagan, and M.J. Ellington, Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J Antimicrob Chemother, 2006. 57(1): p. 154-5.

Descargas

La descarga de datos todavía no está disponible.