Resistencia bacteriana mediada por el gen blaKPC en Klebsiella pneumoniae

Autores/as

  • Valeria Pérez Moncada Universidad Libre
  • Javier Antonio Escobar Pérez Universidad Libre
  • Adalucy Álvarez Aldana Universidad Libre

DOI:

https://doi.org/10.18041/2323-0320/microciencia..2023.12599

Palabras clave:

Klebsiella pneumoniae, Resistencia, Lactámicos, antibióticos

Resumen

Klebsiella pneumoniae es una bacteria oportunista que produce infecciones hospitalarias causando altas tasas de morbilidad y mortalidad a nivel mundial, su tratamiento se ha visto limitado debido a la resistencia frente a diversos antibióticos incluyendo los de amplio espectro que son los antibióticos ß-lactámicos. Con base en lo anterior el objetivo del presente trabajo es recopilar información sobre los elementos implicados en la resistencia bacteriana en Klebsiella pneumoniae y para ello se empleo la base de datos NCBI donde se encontraron artículos relevantes sobre los antibióticos ß-lactámicos, modo de acción, enzimas encargadas de hidrolizar estos antibióticos además de los genes involucrados en su expresión y los mecanismos involucrados en la movilización de genes y por tanto su relación en la diseminación entre bacterias.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

1. Deshpande LM, Jones RN, Fritsche TR, Sader HS. Occurrence and characterization of carbapenemase-producing enterobacteriaceae: Report from the SENTRY Antimicrobial Surveillance Program (2000-2004). Microb Drug Resist. 2006 Dec 16;12(4):223–30.

2. Jones RN. Global epidemiology of antimicrobial resistance among community-acquired and nosocomial pathogens: A five-year summary from the SENTRY Antimicrobial Surveillance Program (1997-2001). Vol. 24, Seminars in Respiratory and Critical Care Medicine. Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue,

3. Brisse S, Grimont F, Grimont PAD. The Genus Klebsiella BT - The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. New York, NY: Springer New York; 2006. p. 159–96. Available from: https://doi.org/10.1007/0-387-30746-X_8

4. JKlebsiella pneumoniae (ID 815) - Genome - NCBI. 7.

5. A.Akingbade O, Ogiogwa J, O I, Okonko I, Okerentugba P, C H, et al. Plasmid Profile of Isolated Klebsiella species in a tertiary Hospital in ogun State,Nigeria. world Appl Sci J. 2013 Jan 1;21:371–8.

6. Sumathy J. A Study on The Enterobacteriaceae Pathogen Klebsiella Pneumoniae Isolated From Sewage And Drinking Water Environment. 2018;4(November):1–5.

8. Jamil I, Zafar A, Qamar MU, Ejaz H, Akhtar J, Waheed A. Multi-drug resistant Klebsiella pneumoniae causing urinary tract infections in children in Pakistan. African J Microbiol Res. 2014 Jan 21;8:316–9.

9. Campos J, Ferech M, Lázaro E, de Abajo F, Oteo J, Stephens P, et al. Surveillance of outpatient antibiotic consumption in Spain according to sales data and reimbursement data. J Antimicrob Chemother [Internet]. 2007 [cited 2021 Mar 20];60(3):698–701. Available from: https://academic.oup.com/jac/article/60/3/698/735299

10. Bush K, Bradford PA. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb Perspect Med. 2016 Aug 1;6(8):a025247.

11. MIDAS® - IQVIA [Internet]. [cited 2021 Apr 4]. Available from: https://www.iqvia.com/solutions/commercialization/brand-strategy-andmanagement/market-measurement/midas

12. Suárez C, Gudiol F. Beta-lactam antibiotics. Enferm Infecc Microbiol Clin. 2009;27(2):116–29.

13. Zango UU, Ibrahim M, Abdurrahman S, Shawai A, Shamsuddin IM. A review on β -lactam antibiotic drug resistance. MOJ Drug Des Dev Ther [Internet]. 2019 [cited 2020 Sep 17];3(2):52–8. Available from: http://medcraveonline.com

14. Fernandes R, Amador P, Prudêncio C. β-Lactams: Chemical structure, mode of action and mechanisms of resistance. Rev Med Microbiol. 2013;24(1):7–17.

15. Page MGP. Beta-lactam antibiotics. In: Antibiotic Discovery and Development. Boston, MA: Springer US; 2012. p. 79–117.

16. Seija V, Vignoli R. Principales grupos de antibioticos. 2006;22.

17. Marcela K, Monge M. CARBAPENÉMICOS: TIPOS Y MECANISMOS DE RESISTENCIA BACTERIANOS. Vol. 70, Revista Médica de Costa Rica y Centroamérica. 2013.

18. Gobernado M, Acuña C. Sociedad Española de Quimioterapia Revisión Ertapenem [Internet]. Vol. 20, Septiembre. 2007 [cited 2020 Sep 22]. Available from: https://seq.es/seq/0214-3429/20/3/277.pdf

19. Muro M, Alcalá Z. CARBAPENEMASAS: UN MECANISMO DE RESISTENCIA BACTERIANA FRENTE LAS CARBAPENEMAS, ANTIBIÓTICOS DE ÚLTIMO RECURSO [Internet]. [cited 2020 Sep 22]. Available from: http://147.96.70.122/Web/TFG/TFG/Memoria/MANUELA MURO DE ZARO ALCALA.pdf

20. Salamanca HU De. y Microbiología Clínica. 2010;28(Supl 2):53–64.

21. Falco A, Aranaga C. Resistencia a los antibióticos beta-lactámicos Carbapenems mediada por el gen blaKPC en Klebsiella pneumoniae. Rev Investig Agrar y Ambient. 2015 Dec 15;6:109.

22. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, et al. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. Vol. 431, Journal of Molecular Biology. Academic Press; 2019. p. 3472–500.

23. Fresnadillo Martínez MJ, García García MI, García Sánchez E, García Sánchez JE. Los carbapenems disponibles: Propiedades y diferencias. Enferm Infecc Microbiol Clin. 2010 Sep 1;28(SUPPL. 2):53–64.

24. Calvo J, Martínez-Martínez L. Mecanismos de acción de los antimicrobianos. Enferm Infecc Microbiol Clin [Internet]. 2009 Jan 1 [cited 2020 Sep 11];27(1):44–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0213005X08000177

25. Alós JI. Antibiotic resistance: A global crisis [Internet]. Vol. 33, Enfermedades Infecciosas y Microbiologia Clinica. 2015 [cited 2020 Sep 23]. p. 692–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0213005X14003413

26. Mestre RC, Ana D, Álvarez B, Yero M. Revista Cubana de Medici … Revista Cubana de Medicina Militar Revista Cubana de Medici …. Rev Cuba Med Mil [Internet]. 2009 [cited 2020 Sep 23];32(Cid):1–5. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572003000100007

27. Martínez Rojas DDV. Betalactamasas tipo AmpC: Generalidades y métodos para detección fenotípica. Rev la Soc Venez Microbiol [Internet]. 2009 [cited 2020 Sep 23];29(2):78–83. Available from: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315- 25562009000200003

28. Peréz D. Resistencia bacteriana a antimicrobianos: su importancia en la toma de decisiones en la práctica diaria. Inf ormaciónTerapeutica del Sist Nac Salud [Internet]. 2016 [cited 2020 Sep 23];22(3):57–67. Available from: https://www.mscbs.gob.es/gl/biblioPublic/publicaciones/docs/bacterias.pdf

29. Kobayashi Y, Takahashi I, Nakae T. Diffusion of β-lactam antibiotics through liposome membranes containing purified porins. Antimicrob Agents Chemother [Internet]. 1982 Nov [cited 2020 Oct 19];22(5):775–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6295267

30. Bush K. Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gramnegative infections. Crit Care [Internet]. 2010 [cited 2020 Oct 19];14(3):224. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20594363

31. Li R, Medchemcomm /, Tehrani KHME, Martin NI. MedChemComm β-lactam/β-lactamase inhibitor combinations: an update. Cite this Med Chem Commun. 2018;9:1439.

32. Bonomo RA. β-Lactamases: A focus on current challenges. Cold Spring Harb Perspect Med. 2017;7(1):1–16.

33. Alejandro R, Ortiz M. Análisis de los elementos genéticos involucrados en la movilización del gen blaNDM-1 en bacterias multirresistentes colombianas [Internet]. 2017 [cited 2020 Oct 5]. Available from: http://bdigital.unal.edu.co/59253/7/RicaurteA.MárquezOrtiz.2017.pdf

34. Walsh TR. Emerging carbapenemases: A global perspective. Int J Antimicrob Agents [Internet]. 2010 Nov [cited 2020 Oct 24];36(SUPPL. 3):S8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857910700042

35. Queenan AM, Bush K. Carbapenemases: The versatile β-lactamases [Internet]. Vol. 20, Clinical Microbiology Reviews. 2007 [cited 2020 Oct 24]. p. 440–58. Available from: https://cmr.asm.org/content/20/3/440

36. Bush K, Jacoby GA, Medeiros AA. MINIREVIEW A Functional Classification Scheme forLactamases and Its Correlation with Molecular Structure [Internet]. Vol. 39, ANTIMICROBIAL AGENTS AND CHEMOTHERAPY. 1995 [cited 2020 Oct 24]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC162717/pdf/391211.pdf

37. Sahuquillo-Arce JM. Carbapenemases: A worldwide threat to antimicrobial therapy. World J Pharmacol. 2015 Jan 1;4:75.

38. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: Past, present, and future. Vol. 55, Antimicrobial Agents and Chemotherapy. Antimicrob Agents Chemother; 2011. p. 4943–60.

39. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed [Internet]. Vol. 38, Saudi Medical Journal. 2017 [cited 2021 Mar 21]. p. 444. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-whichnew-antibiotics-are-urgently-needed

40. OMS. Antimicrobial resistance Global Report on Surveillance [Internet]. Vol. 17, World Health Organization. 2014 [cited 2021 Mar 21]. Available from: https://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf;jsessioni d=CA5F6437AC56134249C79E652DE7AAA6?sequence=1

41. Pacheco R, Osorio L, Correa AM, Villegas MV. Prevalencia de bacterias Gram negativas portadoras del gen blaKPC en hospitales de Colombia. Biomédica [Internet]. 2014 Apr 1;34(Sup1 SE-Artículos originales):81–90. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/1642

42. Ocampo AM, Vargas CA, Sierra PM, Cienfuegos AV, Jiménez JN. Caracterización molecular de un brote de Klebsiella pneumoniae resistente a carbapenémicos en un hospital de alto nivel de complejidad de Medellín, Colombia. Biomedica [Internet]. 2015 [cited 2020 Oct 26];35(4):496–504. Available from: http://www.scielo.org.co/pdf/bio/v35n4/v35n4a07.pdf

43. MULTISPECIES: carbapenem-hydrolyzing class A beta-lactamase KPC-2 [Bac - Protein - NCBI [Internet]. [cited 2020 Oct 27]. Available from: https://www.ncbi.nlm.nih.gov/protein/WP_004199234.1

44. Sánchez B M, Msc B, Muñoz R, Esp M, Gutiérrez N. Resistencia bacteriana a los antibióticos: mecanismos de transferencia. Bacterial Resistance to Antibiotics: Mechanisms of Transfer. 2012 Jan 17; 45. Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in bla KPC gene mobilization. Antimicrob Agents Chemother [Internet]. 2011 [cited 2020 Oct 27];55(11):5370–3. Available from: http://aac.asm.org/

46 Martinko JM, Madigan MT PJ. Brock: Biologia de los Microorganismos. 8a Edición. Capella Isabella, editor. PRENTICE HALL, INC; 2003. p. 1096.

47. Marina L, Forero L. Genetica bacteriana: conjugación. [cited 2020 Oct 29];1–7. Available from: http://higiene.edu.uy/cefa/Libro2002/Cap 12.pdf

48. Roy PH. Genetic Mechanisms of Transfer of Drug Resistance. In: Antimicrobial Drug Resistance [Internet]. Totowa, NJ: Humana Press; 2009 [cited 2020 Oct 29]. p. 53–64. Available from: http://link.springer.com/10.1007/978-1-59745-180-2_5

49. Plasterk RHA. Transposable Elements. In: Brenner’s Encyclopedia of Genetics: Second Edition [Internet]. Elsevier; 2013 [cited 2020 Nov 2]. p. 146–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123749840015709

50. Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN. Carbapenemase-producing Klebsiella pneumoniae: Molecular and genetic decoding [Internet]. Vol. 22, Trends in Microbiology. 2014 [cited 2020 Nov 22]. p. 686–96. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0966842X14001930

51. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance [Internet]. Vol. 31, Clinical Microbiology Reviews. 2018 [cited 2020 Nov 2]. Available from: http://cmr.asm.org/

52. Makałowski W, Gotea V, Pande A, Makałowska I. Transposable elements: Classification, identification, and their use as a tool for comparative genomics. In: Methods in Molecular Biology [Internet]. Humana, New York, NY; 2019 [cited 2020 Oct 29]. p. 177–207. Available from: http://link.springer.com/10.1007/978-1-4939-9074-0_6

53. Martinez LGM. Genética Bacteriana y Mecanismos de la Transferencia Horizontal Genética Concepto de especie bacteriana. Genet Bact [Internet]. 2013 [cited 2020 Oct 29];1:5. Available from: https://www.fmed.uba.ar/sites/default/files/2020-07/T2 Texto Clase 2- Genética y Transm Horiz-Centron 2020.pdf

54. Reyes JA, Melano R, Cárdenas PA, Trueba G. Mobile genetic elements associated with carbapenemase genes in South American Enterobacterales [Internet]. Vol. 24, Brazilian Journal of Infectious Diseases. 2020 [cited 2020 Nov 22]. p. 231–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1413867020300234

55. Hickman AB, Dyda F. Mechanisms of DNA Transposition. Mob DNA III. 2015;529–53.

Descargas

Publicado

2024-01-01

Número

Sección

Artículos

Cómo citar

Pérez Moncada, V., Escobar Pérez, J. A., & Álvarez Aldana, A. (2024). Resistencia bacteriana mediada por el gen blaKPC en Klebsiella pneumoniae. Microciencia, 12. https://doi.org/10.18041/2323-0320/microciencia..2023.12599