Resistencia bacteriana mediada por el gen blaKPC en Klebsiella pneumoniae
DOI:
https://doi.org/10.18041/2323-0320/microciencia..2023.12599Palabras clave:
Klebsiella pneumoniae, Resistencia, Lactámicos, antibióticosResumen
Klebsiella pneumoniae es una bacteria oportunista que produce infecciones hospitalarias causando altas tasas de morbilidad y mortalidad a nivel mundial, su tratamiento se ha visto limitado debido a la resistencia frente a diversos antibióticos incluyendo los de amplio espectro que son los antibióticos ß-lactámicos. Con base en lo anterior el objetivo del presente trabajo es recopilar información sobre los elementos implicados en la resistencia bacteriana en Klebsiella pneumoniae y para ello se empleo la base de datos NCBI donde se encontraron artículos relevantes sobre los antibióticos ß-lactámicos, modo de acción, enzimas encargadas de hidrolizar estos antibióticos además de los genes involucrados en su expresión y los mecanismos involucrados en la movilización de genes y por tanto su relación en la diseminación entre bacterias.
Descargas
Referencias
1. Deshpande LM, Jones RN, Fritsche TR, Sader HS. Occurrence and characterization of carbapenemase-producing enterobacteriaceae: Report from the SENTRY Antimicrobial Surveillance Program (2000-2004). Microb Drug Resist. 2006 Dec 16;12(4):223–30.
2. Jones RN. Global epidemiology of antimicrobial resistance among community-acquired and nosocomial pathogens: A five-year summary from the SENTRY Antimicrobial Surveillance Program (1997-2001). Vol. 24, Seminars in Respiratory and Critical Care Medicine. Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue,
3. Brisse S, Grimont F, Grimont PAD. The Genus Klebsiella BT - The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. New York, NY: Springer New York; 2006. p. 159–96. Available from: https://doi.org/10.1007/0-387-30746-X_8
4. JKlebsiella pneumoniae (ID 815) - Genome - NCBI. 7.
5. A.Akingbade O, Ogiogwa J, O I, Okonko I, Okerentugba P, C H, et al. Plasmid Profile of Isolated Klebsiella species in a tertiary Hospital in ogun State,Nigeria. world Appl Sci J. 2013 Jan 1;21:371–8.
6. Sumathy J. A Study on The Enterobacteriaceae Pathogen Klebsiella Pneumoniae Isolated From Sewage And Drinking Water Environment. 2018;4(November):1–5.
8. Jamil I, Zafar A, Qamar MU, Ejaz H, Akhtar J, Waheed A. Multi-drug resistant Klebsiella pneumoniae causing urinary tract infections in children in Pakistan. African J Microbiol Res. 2014 Jan 21;8:316–9.
9. Campos J, Ferech M, Lázaro E, de Abajo F, Oteo J, Stephens P, et al. Surveillance of outpatient antibiotic consumption in Spain according to sales data and reimbursement data. J Antimicrob Chemother [Internet]. 2007 [cited 2021 Mar 20];60(3):698–701. Available from: https://academic.oup.com/jac/article/60/3/698/735299
10. Bush K, Bradford PA. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb Perspect Med. 2016 Aug 1;6(8):a025247.
11. MIDAS® - IQVIA [Internet]. [cited 2021 Apr 4]. Available from: https://www.iqvia.com/solutions/commercialization/brand-strategy-andmanagement/market-measurement/midas
12. Suárez C, Gudiol F. Beta-lactam antibiotics. Enferm Infecc Microbiol Clin. 2009;27(2):116–29.
13. Zango UU, Ibrahim M, Abdurrahman S, Shawai A, Shamsuddin IM. A review on β -lactam antibiotic drug resistance. MOJ Drug Des Dev Ther [Internet]. 2019 [cited 2020 Sep 17];3(2):52–8. Available from: http://medcraveonline.com
14. Fernandes R, Amador P, Prudêncio C. β-Lactams: Chemical structure, mode of action and mechanisms of resistance. Rev Med Microbiol. 2013;24(1):7–17.
15. Page MGP. Beta-lactam antibiotics. In: Antibiotic Discovery and Development. Boston, MA: Springer US; 2012. p. 79–117.
16. Seija V, Vignoli R. Principales grupos de antibioticos. 2006;22.
17. Marcela K, Monge M. CARBAPENÉMICOS: TIPOS Y MECANISMOS DE RESISTENCIA BACTERIANOS. Vol. 70, Revista Médica de Costa Rica y Centroamérica. 2013.
18. Gobernado M, Acuña C. Sociedad Española de Quimioterapia Revisión Ertapenem [Internet]. Vol. 20, Septiembre. 2007 [cited 2020 Sep 22]. Available from: https://seq.es/seq/0214-3429/20/3/277.pdf
19. Muro M, Alcalá Z. CARBAPENEMASAS: UN MECANISMO DE RESISTENCIA BACTERIANA FRENTE LAS CARBAPENEMAS, ANTIBIÓTICOS DE ÚLTIMO RECURSO [Internet]. [cited 2020 Sep 22]. Available from: http://147.96.70.122/Web/TFG/TFG/Memoria/MANUELA MURO DE ZARO ALCALA.pdf
20. Salamanca HU De. y Microbiología Clínica. 2010;28(Supl 2):53–64.
21. Falco A, Aranaga C. Resistencia a los antibióticos beta-lactámicos Carbapenems mediada por el gen blaKPC en Klebsiella pneumoniae. Rev Investig Agrar y Ambient. 2015 Dec 15;6:109.
22. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, et al. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. Vol. 431, Journal of Molecular Biology. Academic Press; 2019. p. 3472–500.
23. Fresnadillo Martínez MJ, García García MI, García Sánchez E, García Sánchez JE. Los carbapenems disponibles: Propiedades y diferencias. Enferm Infecc Microbiol Clin. 2010 Sep 1;28(SUPPL. 2):53–64.
24. Calvo J, Martínez-Martínez L. Mecanismos de acción de los antimicrobianos. Enferm Infecc Microbiol Clin [Internet]. 2009 Jan 1 [cited 2020 Sep 11];27(1):44–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0213005X08000177
25. Alós JI. Antibiotic resistance: A global crisis [Internet]. Vol. 33, Enfermedades Infecciosas y Microbiologia Clinica. 2015 [cited 2020 Sep 23]. p. 692–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0213005X14003413
26. Mestre RC, Ana D, Álvarez B, Yero M. Revista Cubana de Medici … Revista Cubana de Medicina Militar Revista Cubana de Medici …. Rev Cuba Med Mil [Internet]. 2009 [cited 2020 Sep 23];32(Cid):1–5. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572003000100007
27. Martínez Rojas DDV. Betalactamasas tipo AmpC: Generalidades y métodos para detección fenotípica. Rev la Soc Venez Microbiol [Internet]. 2009 [cited 2020 Sep 23];29(2):78–83. Available from: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315- 25562009000200003
28. Peréz D. Resistencia bacteriana a antimicrobianos: su importancia en la toma de decisiones en la práctica diaria. Inf ormaciónTerapeutica del Sist Nac Salud [Internet]. 2016 [cited 2020 Sep 23];22(3):57–67. Available from: https://www.mscbs.gob.es/gl/biblioPublic/publicaciones/docs/bacterias.pdf
29. Kobayashi Y, Takahashi I, Nakae T. Diffusion of β-lactam antibiotics through liposome membranes containing purified porins. Antimicrob Agents Chemother [Internet]. 1982 Nov [cited 2020 Oct 19];22(5):775–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6295267
30. Bush K. Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gramnegative infections. Crit Care [Internet]. 2010 [cited 2020 Oct 19];14(3):224. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20594363
31. Li R, Medchemcomm /, Tehrani KHME, Martin NI. MedChemComm β-lactam/β-lactamase inhibitor combinations: an update. Cite this Med Chem Commun. 2018;9:1439.
32. Bonomo RA. β-Lactamases: A focus on current challenges. Cold Spring Harb Perspect Med. 2017;7(1):1–16.
33. Alejandro R, Ortiz M. Análisis de los elementos genéticos involucrados en la movilización del gen blaNDM-1 en bacterias multirresistentes colombianas [Internet]. 2017 [cited 2020 Oct 5]. Available from: http://bdigital.unal.edu.co/59253/7/RicaurteA.MárquezOrtiz.2017.pdf
34. Walsh TR. Emerging carbapenemases: A global perspective. Int J Antimicrob Agents [Internet]. 2010 Nov [cited 2020 Oct 24];36(SUPPL. 3):S8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857910700042
35. Queenan AM, Bush K. Carbapenemases: The versatile β-lactamases [Internet]. Vol. 20, Clinical Microbiology Reviews. 2007 [cited 2020 Oct 24]. p. 440–58. Available from: https://cmr.asm.org/content/20/3/440
36. Bush K, Jacoby GA, Medeiros AA. MINIREVIEW A Functional Classification Scheme forLactamases and Its Correlation with Molecular Structure [Internet]. Vol. 39, ANTIMICROBIAL AGENTS AND CHEMOTHERAPY. 1995 [cited 2020 Oct 24]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC162717/pdf/391211.pdf
37. Sahuquillo-Arce JM. Carbapenemases: A worldwide threat to antimicrobial therapy. World J Pharmacol. 2015 Jan 1;4:75.
38. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: Past, present, and future. Vol. 55, Antimicrobial Agents and Chemotherapy. Antimicrob Agents Chemother; 2011. p. 4943–60.
39. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed [Internet]. Vol. 38, Saudi Medical Journal. 2017 [cited 2021 Mar 21]. p. 444. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-whichnew-antibiotics-are-urgently-needed
40. OMS. Antimicrobial resistance Global Report on Surveillance [Internet]. Vol. 17, World Health Organization. 2014 [cited 2021 Mar 21]. Available from: https://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf;jsessioni d=CA5F6437AC56134249C79E652DE7AAA6?sequence=1
41. Pacheco R, Osorio L, Correa AM, Villegas MV. Prevalencia de bacterias Gram negativas portadoras del gen blaKPC en hospitales de Colombia. Biomédica [Internet]. 2014 Apr 1;34(Sup1 SE-Artículos originales):81–90. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/1642
42. Ocampo AM, Vargas CA, Sierra PM, Cienfuegos AV, Jiménez JN. Caracterización molecular de un brote de Klebsiella pneumoniae resistente a carbapenémicos en un hospital de alto nivel de complejidad de Medellín, Colombia. Biomedica [Internet]. 2015 [cited 2020 Oct 26];35(4):496–504. Available from: http://www.scielo.org.co/pdf/bio/v35n4/v35n4a07.pdf
43. MULTISPECIES: carbapenem-hydrolyzing class A beta-lactamase KPC-2 [Bac - Protein - NCBI [Internet]. [cited 2020 Oct 27]. Available from: https://www.ncbi.nlm.nih.gov/protein/WP_004199234.1
44. Sánchez B M, Msc B, Muñoz R, Esp M, Gutiérrez N. Resistencia bacteriana a los antibióticos: mecanismos de transferencia. Bacterial Resistance to Antibiotics: Mechanisms of Transfer. 2012 Jan 17; 45. Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in bla KPC gene mobilization. Antimicrob Agents Chemother [Internet]. 2011 [cited 2020 Oct 27];55(11):5370–3. Available from: http://aac.asm.org/
46 Martinko JM, Madigan MT PJ. Brock: Biologia de los Microorganismos. 8a Edición. Capella Isabella, editor. PRENTICE HALL, INC; 2003. p. 1096.
47. Marina L, Forero L. Genetica bacteriana: conjugación. [cited 2020 Oct 29];1–7. Available from: http://higiene.edu.uy/cefa/Libro2002/Cap 12.pdf
48. Roy PH. Genetic Mechanisms of Transfer of Drug Resistance. In: Antimicrobial Drug Resistance [Internet]. Totowa, NJ: Humana Press; 2009 [cited 2020 Oct 29]. p. 53–64. Available from: http://link.springer.com/10.1007/978-1-59745-180-2_5
49. Plasterk RHA. Transposable Elements. In: Brenner’s Encyclopedia of Genetics: Second Edition [Internet]. Elsevier; 2013 [cited 2020 Nov 2]. p. 146–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123749840015709
50. Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN. Carbapenemase-producing Klebsiella pneumoniae: Molecular and genetic decoding [Internet]. Vol. 22, Trends in Microbiology. 2014 [cited 2020 Nov 22]. p. 686–96. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0966842X14001930
51. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance [Internet]. Vol. 31, Clinical Microbiology Reviews. 2018 [cited 2020 Nov 2]. Available from: http://cmr.asm.org/
52. Makałowski W, Gotea V, Pande A, Makałowska I. Transposable elements: Classification, identification, and their use as a tool for comparative genomics. In: Methods in Molecular Biology [Internet]. Humana, New York, NY; 2019 [cited 2020 Oct 29]. p. 177–207. Available from: http://link.springer.com/10.1007/978-1-4939-9074-0_6
53. Martinez LGM. Genética Bacteriana y Mecanismos de la Transferencia Horizontal Genética Concepto de especie bacteriana. Genet Bact [Internet]. 2013 [cited 2020 Oct 29];1:5. Available from: https://www.fmed.uba.ar/sites/default/files/2020-07/T2 Texto Clase 2- Genética y Transm Horiz-Centron 2020.pdf
54. Reyes JA, Melano R, Cárdenas PA, Trueba G. Mobile genetic elements associated with carbapenemase genes in South American Enterobacterales [Internet]. Vol. 24, Brazilian Journal of Infectious Diseases. 2020 [cited 2020 Nov 22]. p. 231–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1413867020300234
55. Hickman AB, Dyda F. Mechanisms of DNA Transposition. Mob DNA III. 2015;529–53.