Biorremediación de pesticidas, identificación de microorganismos y estrategias de trabajo
DOI:
https://doi.org/10.18041/2323-0320/microciencia..2023.12595Palabras clave:
Biorremediación, Degradación, Metabolismo, Microorganismos, PesticidasResumen
Este artículo de revisión aborda exhaustivamente la problemática del uso de pesticidas en la agricultura colombiana, comenzando con una contextualización su importancia, seguido de una clasificación detallada de los tipos de pesticidas utilizados. Adicionalmente, se examina la situación específica en Colombia, incluyendo tendencias, regulaciones y prácticas agrícolas comunes, con un énfasis los efectos nocivos de la contaminación de aguas y suelos debido a la aplicación de pesticidas, tanto en términos ambientales como en la salud humana y animal. Finalmente, se presenta y explora en detalle las técnicas de biorremediación y fitorremediación como estrategias prometedoras para el tratamiento y degradación de pesticidas, destacando las especies microbianas utilizadas en estos procesos. El documento, proporciona una visión integral de los desafíos y las soluciones relacionados con el uso de pesticidas en la agricultura colombiana, subrayando la necesidad de enfoques sostenibles para mitigar los impactos negativos en el medio ambiente y la salud
Descargas
Referencias
1. Salazar-Flores J, Lomelí-Martínez SM, Ceja-Gálvez HR, Torres-Jasso JH, TorresReyes LA, Torres-Sánchez ED. Impacts of Pesticides on Oral Cavity Health and Ecosystems: A Review. Int J Environ Res Public Health. 2022 Sep 1;19(18).
2. Voltz M, Guibaud G, Dagès C, Douzals JP, Guibal R, Grimbuhler S, et al. Pesticide and agro-ecological transition: assessing the environmental and human impacts of pesticides and limiting their use. Environmental Science and Pollution Research. 2022 Jan 1;29(1).
3. Islas-García A, Vega-Loyo L, Aguilar-López R, Xoconostle-Cázares B, RodríguezVázquez R. Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility. J Environ Sci Health B. 2015 Feb 1;50(2):99–108.
4. Thomas G, Withall D, Birkett M. Harnessing microbial volatiles to replace pesticides and fertilizers. Microb Biotechnol. 2020 Sep 1;13(5):1366–76.
5. Parween T, Jan S. Pesticides and environmental ecology. Ecophysiology of Pesticides. 2019 Jan 1;1–38.
6. Tudi M, Ruan HD, Wang L, Lyu J, Sadler R, Connell D, et al. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int J Environ Res Public Health [Internet]. 2021 Feb 1 [cited 2023 Sep 7];18(3):1–24. Available from: /pmc/articles/PMC7908628/
7. Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, et al. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. J Hazard Mater. 2022 Feb 15;424.
8. Hoyos LS, Carvajal S, Solano L, Rodriguez J, Orozco L, Lopez Y, et al. Monitoreo Citogenético de Agricultores expuestos a plaguicidas en Colombia . Ambiental [Internet]. 1996 [cited 2023 Sep 6];1(3):535–8. Available from: https://ehp.niehs.nih.gov/doi/abs/10.1289/ehp.96104s3535
9. López D, Ahumada D, Díaz A, Guerrero J. Evaluación de residuos de plaguicidas en miel de diferentes regiones geográficas de Colombia. Control alimentario [Internet]. 2014 [cited 2023 Sep 6]; Available from: https://www.sciencedirect.com/science/article/pii/S095671351300457X
10. De Colombia R. Ministerio de Ambiente, Vivienda y Desarrollo Territorial.
11. Hoyos LS, Carvajal S, Solano L, Rodriguez J, Orozco L, López Y, et al. Cytogenetic monitoring of farmers exposed to pesticides in Colombia. Environ Health Perspect. 1996;104(SUPPL. 3):535–8.
12. Arias L, Bojacá C, Ahumada D, Schrevens E. Monitoreo de residuos de plaguicidas en tomate comercializado en Bogotá, Colombia. Control de Alimentos [Internet]. 2014 [cited 2023 Sep 6]; Available from: https://www.sciencedirect.com/science/article/pii/S0956713513003290
13. Varela-Martínez D, González-Curbelo M. Análisis de alto rendimiento de pesticidas en frutas tropicales menores de Colombia. Química de los alimentos [Internet]. 2019 [cited 2023 Sep 6]; Available from: https://www.sciencedirect.com/science/article/pii/S0308814618321496
14. Valbuena D, Cely-Santos M, Environmental DOJ of, 2021 undefined. Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Elsevier [Internet]. [cited 2023 Sep 6]; Available from: https://www.sciencedirect.com/science/article/pii/S0301479721002036
15. Feola G, protection CBC, 2010 undefined. Identifying and investigating pesticide application types to promote a more sustainable pesticide use. The case of smallholders in Boyacá, Colombia. Elsevier [Internet]. [cited 2023 Sep 6]; Available from: https://www.sciencedirect.com/science/article/pii/S0261219410000207
16. Bellotti A, Cardona C, Agricultural SLJ of, 1990 undefined. Trends in pesticide use in Colombia and Brazil. researchgate.net [Internet]. [cited 2023 Sep 6]; Available from: https://www.researchgate.net/profile/StephenLapointe/publication/268425227_TRENDS_IN_PESTICIDE_USE_IN_COLOMBI A_AND_BRAZIL%27/links/54c64d670cf219bbe4f7fd8d/TRENDS-INPESTICIDE-USE-IN-COLOMBIA-AND-BRAZIL.pdf
17. Bojacá C, Arias L, Ahumada D, control HCF, 2013 undefined. Evaluation of pesticide residues in open field and greenhouse tomatoes from Colombia. Elsevier [Internet]. [cited 2023 Sep 6]; Available from: https://www.sciencedirect.com/science/article/pii/S095671351200463X
18. Fenner K, Canonica S, Wackett LP, Elsner M. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science [Internet]. 2013 [cited 2023 Sep 7];341(6147):752–8. Available from: https://pubmed.ncbi.nlm.nih.gov/23950532/
19. Abubakar Y, Tijjani H, Egbuna C, Adetunji CO, Kala S, Kryeziu TL, et al. Pesticides, History, and Classification. Natural Remedies for Pest, Disease and Weed Control. 2020 Jan 1;29–42.
20. Gupta RC, Milatovic D. Insecticides. Biomarkers in Toxicology. 2014 Jan 1;389–407.
21. Singh PK, Singh RP, Singh P, Singh RL. Food Hazards: Physical, Chemical, and Biological. Food Safety and Human Health. 2019 Jan 1;15–65.
22. Albrecht U, Archer L, Roberts P. HS1366/HS1366: Antibiotics in Crop Production [Internet]. [cited 2023 Sep 7]. Available from: https://edis.ifas.ufl.edu/publication/HS1366 23. Holt JS. Herbicides. Encyclopedia of Biodiversity: Second Edition. 2013 Jan 1;87–95.
24. RODENTICIDES TOPIC FACT SHEET What are rodenticides? [cited 2023 Sep 7]; Available from: http://www.epa.gov/oppfead1/labeling/lrm/chap-07.pdf
25. Horsak RD, Bedient PB, Hamilton MC, Thomas F Ben. Pesticides. Environmental Forensics: Contaminant Specific Guide. 1964 Jan 1;143–65.
26. Eicher TJ. Toxic Encephalopathies I: Cortical and Mixed Encephalopathies. Clinical Neurotoxicology: Syndromes, Substances, Environments, Expert Consult - Online and Print. 2009 Jan 1;69–87.
27. Breckenridge CB, Werner C, Stevens JT, Sumner DD. Hazard Assessment for Selected Symmetrical and Asymmetrical Triazine Herbicides. The Triazine Herbicides. 2008 Jan 1;387–98.
28. PubChem [Internet]. [cited 2023 Sep 7]. Available from: https://pubchem.ncbi.nlm.nih.gov/
29. Curl CL, Spivak M, Phinney R, Montrose L. Synthetic Pesticides and Health in Vulnerable Populations: Agricultural Workers. Curr Environ Health Rep. 2020 Mar 1;7(1):13–29.
30. Merhi A, Kordahi R, Hassan HF. A review on the pesticides in coffee: Usage, health effects, detection, and mitigation. Front Public Health. 2022 Nov 8;10.
31. Issa ST, Takshe AA, Alwan NH, ElBarazi I. Editorial: Pesticides exposure and public health. Front Public Health [Internet]. 2023 [cited 2023 Sep 6];11:1211115. Available from: http://www.ncbi.nlm.nih.gov/pubmed/37469699
32. Tudi M, Ruan HD, Wang L, Lyu J, Sadler R, Connell D, et al. Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health. 2021 Feb 1;18(3):1–24.
33. Fucic A, Duca R, Galea KS, Maric T, Garcia K, Bloom M, et al. Reproductive health risks associated with occupational and environmental exposure to pesticides. Int J Environ Res Public Health. 2021 Jun 2;18(12).
34. Blair A, Ritz B, Wesseling C, Freeman LB. Pesticides and human health. Occup Environ Med. 2015 Feb 1;72(2):81–2.
35. Souza GDS, da Costa LCA, Maciel AC, Reis FDV, Pamplona YDAP. Presença de agrotóxicos na atmosfera e risco à saúde humana: Uma discussão para a vigilância em saúde ambiental. Ciencia e Saude Coletiva. 2017 Oct 1;22(10):3269–80.
36. Ritter L, Goushleff NCI, Arbuckle T, Cole D, Raizenne M. Addressing the linkage between exposure to pesticides and human health effects - Research trends and priorities for research. J Toxicol Environ Health B Crit Rev. 2006 Jun 1;9(6):441–56.
37. Waichman AV, Römbke J, Ribeiro MOA, Nina NCS. Use and fate of pesticides in the Amazon State, Brazil: Risk to human health and the environment. Environmental Science and Pollution Research. 2002;9(6):423–8.
38. Mamane A, Baldi I, Tessier JF, Raherison C, Bouvier G. Occupational exposure to pesticides and respiratory health. European Respiratory Review. 2015 Jun 1;24(136):306–19.
39. Hoque MS, Tamanna F, Hasan MM, Al Banna MH, Mondal P, Prodhan MDH, et al. Probabilistic public health risks associated with pesticides and heavy metal exposure through consumption of common dried fish in coastal regions of Bangladesh. Environmental Science and Pollution Research. 2022 Mar 1;29(14):20112–27.
40. Suratman S, Edwards JW, Babina K. Organophosphate pesticides exposure among farmworkers: Pathways and risk of adverse health effects. Rev Environ Health. 2015 Mar 1;30(1):65–79.
41. Chaudhari YS, Kumar P, Soni S, Gacem A, Kumar V, Singh S, et al. An inclusive outlook on the fate and persistence of pesticides in the environment and integrated eco-technologies for their degradation. Toxicol Appl Pharmacol. 2023 May 1;466.
42. Dar MA, Kaushik G, Villarreal-Chiu JF. Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: A review. J Environ Manage. 2019 Jun 1;239:124–36.
43. Iyer R, Iken B, Damania A. A comparison of organophosphate degradation genes and bioremediation applications. Environ Microbiol Rep. 2013 Dec;5(6):787–98.
44. Mali H, Shah C, Raghunandan BH, Prajapati AS, Patel DH, Trivedi U, et al. Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. J Environ Sci (China). 2023 May 1;127:234–50.
45. Megharaj M, Venkateswarlu K, Naidu R. Bioremediation. Encyclopedia of Toxicology: Third Edition. 2014 Jan 1;485–9.
46. Azubuike CC, Chikere CB, Okpokwasili GC. Bioremediation techniques– classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 2016 Nov 1;32(11).
47. Patel AK, Singhania RR, Pal A, Chen CW, Pandey A, Dong C Di. Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases. Science of the Total Environment. 2022 Apr 15;817.
48. Lin C, Cheruiyot NK, Bui XT, Ngo HH. Composting and its application in bioremediation of organic contaminants. Bioengineered. 2022;13(1):1073–89.
49. Dash DM, Osborne WJ. A systematic review on the implementation of advanced and evolutionary biotechnological tools for efficient bioremediation of organophosphorus pesticides. Chemosphere. 2023 Feb 1;313.
50. Nie J, Sun Y, Zhou Y, Kumar M, Usman M, Li J, et al. Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of the Total Environment. 2020 Mar 10;707.
51. Cubides C, Gutiérrez-Cortés C, Suarez H, Cubides C, Gutiérrez-Cortés C, Suarez H. Bioprospecting in food production: an approximation of the current state in Colombia. Rev Fac Nac Agron Medellin [Internet]. 2023 [cited 2023 Sep 7];76(1):10227–46. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304- 28472023000110227&lng=en&nrm=iso&tlng=en
52. Hage-Ahmed K, Rosner K, Steinkellner S. Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag Sci. 2019 Mar 1;75(3):583–90.
53. Sheng Y, Benmati M, Guendouzi S, Benmati H, Yuan Y, Song J, et al. Latest ecofriendly approaches for pesticides decontamination using microorganisms and consortia microalgae: A comprehensive insights, challenges, and perspectives. Chemosphere. 2022 Dec 1;308.
54. Tudi M, Ruan HD, Wang L, Lyu J, Sadler R, Connell D, et al. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int J Environ Res Public Health [Internet]. 2021 Feb 1 [cited 2023 Sep 7];18(3):1–24. Available from: /pmc/articles/PMC7908628/
55. Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, et al. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnology. 2021 Dec 1;19(1).
56. Sun M, Xu W, Zhang W, Guang C, Mu W. Microbial elimination of carbamate pesticides: specific strains and promising enzymes. Appl Microbiol Biotechnol. 2022 Sep 1;106(18):5973–86.
57. Manikandan SK, Pallavi P, Shetty K, Bhattacharjee D, Giannakoudakis DA, Katsoyiannis IA, et al. Effective Usage of Biochar and Microorganisms for the Removal of Heavy Metal Ions and Pesticides. Molecules. 2023 Jan 1;28(2).