El acetaminofén: contaminante emergente en el agua y su degradación a través del uso de microorganismos: Revisión bibliográfica
DOI:
https://doi.org/10.18041/2323-0320/microciencia..2023.12592Palabras clave:
N-acetil-paminofenol, N-acetil-p-benzoquinona imina, contaminantes emergentes, PTARsResumen
Durante las últimas décadas debido al aumento poblacional y al crecimiento de la industria, se ha reportado la aparición de contaminantes de interés emergente (CECs) en aguas superficiales, aguas subterráneas y en agua potable. Estos CECs hacen alusión a compuestos orgánicos provenientes de las actividades humanas, estos pueden acumularse de un nivel trófico a otro en las especies marinas, recorriendo la cadena alimentaria y aumentando su toxicidad a medida que transcurre el tiempo, llegando a sobrepasar los límites tolerables por los seres vivos; de igual forma, pueden llegar a encontrarse en aguas superficiales y agua potable. Uno de los fármacos más recetado y comercializado en Colombia es el acetaminofén (APAP), el cual es un analgésico y antipirético que se utiliza para tratar la fiebre y el dolor, por lo que es uno de los fármacos más encontrados en el agua. Desde hace algún tiempo se han desarrollado técnicas para degradar el APAP empleando métodos químicos de oxidación como la ozonización y la fotocatálisis. Sin embargo, estos procesos de oxidación conllevan la producción de subproductos no deseados y peligrosos para el medioambiente. Por esta razón, diferentes autores buscan promover métodos de degradación biológica por vías catalíticas a través del uso de microorganismos, para el aprovechamiento de estos desechos en la producción de biomasa. Esta revisión tiene como objetivo reconocer las características químicas del APAP, los efectos tóxicos que conllevan su presencia en el agua y los mecanismos actuales para su degradación.
Descargas
Referencias
1. Starling MCVM, Amorim CC, Leão MMD. Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. J Hazard Mater. 2019 Jun 15;17–36.
2. Tang Y, Yin M, Yang W, Li H, Zhong Y, Mo L, et al. Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. Vol. 91, Water Environment Research. John Wiley and Sons Inc.; 2019. p. 984–91.
3. Peña-Guzmán C, Ulloa-Sánchez S, Mora K, Helena-Bustos R, LopezBarrera E, Alvarez J, et al. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Vol. 237, Journal of Environmental Management. Academic Press; 2019. p. 408–23.
4. Akhbarizadeh R, Dobaradaran S, Schmidt TC, Nabipour I, Spitz J. Worldwide bottled water occurrence of emerging contaminants: A review of the recent scientific literature. Vol. 392, Journal of Hazardous Materials. Elsevier B.V.; 2020.
5. Rocha AC, Camacho C, Eljarrat E, Peris A, Aminot Y, Readman JW, et al. Bioaccumulation of persistent and emerging pollutants in wild sea urchin Paracentrotus lividus. Environ Res. 2018 Feb 1;161:354–63.
6. Shipingana LNN, Shivaraju HP, Yashas SR. Quantitative assessment of pharmaceutical drugs in a municipal wastewater and overview of associated risks. Appl Water Sci. 2022 Feb 1;12(2).
7. Sukhn C. Bioaccumulation and depuration in sea urchins Paracentrotus lividus (Lebanon) and Heliocidaris erythrogramma (Australia). 2022; Available from: http://hdl.handle.net/1959.4/52476inhttps://unsworks.unsw.edu.auon
8. López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, ArévaloGallegos A, Lizarazo-Holguin LA, Barceló D, et al. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. Vol. 690, Science of the Total Environment. Elsevier B.V.; 2019. p. 1068–88.
9. Lei M, Zhang L, Lei J, Zong L, Li J, Wu Z, et al. Overview of emerging contaminants and associated human health effects. Vol. 2015, BioMed Research International. Hindawi Limited; 2015.
10. Fent K, Weston AA, Caminada D. Ecotoxicology of human pharmaceuticals. Vol. 76, Aquatic Toxicology. Elsevier; 2006. p. 122–59.
11. Bártíková H, Podlipná R, Skálová L. Veterinary drugs in the environment and their toxicity to plants. Vol. 144, Chemosphere. Elsevier Ltd; 2016. p. 2290–301.
12. Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Vol. 175, Journal of Hazardous Materials. 2010. p. 45–95.
13. Parolini M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Vol. 740, Science of the Total Environment. Elsevier B.V.; 2020.
14. Phong Vo HN, Le GK, Hong Nguyen TM, Bui XT, Nguyen KH, Rene ER, et al. Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere. 2019 Dec 1;236.
15. Agarwal N. Paracetamol - A Contaminant of High Concern: Existence in Environment and Adverse Effect. Pharmaceutical Drug Regulatory Affairs Journal. 2022;5(1).
16. Diccionario NIH. Instituto Nacional del Cancer. [cited 2022 Nov 12]. ciclooxigenasa-2. Available from: https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionariocancer/def/ciclooxigenasa-2
17.U.S Food and Drug Administration. Don’t Double Up on Acetaminophen [Internet]. 2018 [cited 2022 Oct 17]. Available from: https://www.fda.gov/consumers/consumer-updates/dont-doubleacetaminophen
18. Bacchi S, Palumbo P, Sponta A, Coppolino MF. Clinical Pharmacology of Non-Steroidal Anti-Inflammatory Drugs: A Review. Vol. 11, Allergy Agents in Medicinal Chemistry. 2012.
19. Choi K, Kim Y, Park J, Park CK, Kim MY, Kim HS, et al. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Science of the Total Environment. 2008 Nov 1;405(1–3):120–8.
20. Observamed. med-informatica.net. 2015 [cited 2022 Oct 17]. ¿Colombianos adictos a Acetaminofen? Antes del Chikunguña laboratorios reportaron ventas por COP 1.000.849.436.025 (1 billón) a Sismed 2012-14. Available from: http://www.medinformatica.net/BIS/BisBcm19de2015_04a10may15.htm
21. Madera-Parra CA, Jiménez-Bambague EM, Toro-Vélez AF, LaraBorrero JA, Bedoya-Ríos DF, Duque-Pardo V. Estudio exploratorio de la presencia de microcontaminantes en el ciclo urbano del agua en Colombia: Caso de estudio Santiago de Cali. Revista Internacional de Contaminacion Ambiental. 2018;34(3):475–87.
22. Botero-Coy AM, Martínez-Pachón D, Boix C, Rincón RJ, Castillo N, Arias-Marín LP, et al. ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater.’ Science of the Total Environment. 2018 Nov 15;642:842–53.
23. Tejada C, Quiñonez E, Peña M. Contaminantes emergentes en aguas: metabolitos de fármacos. una revisión. Revista Facultad de Ciencias Básicas. 2014;10:80–101.
24. Bernal V, Giraldo L, Moreno-Piraján JC. Acetaminophen adsorption on activated carbons at different pH. Change of enthalpy and entropy of the process. Revista Colombiana de Quimica. 2018 May 1;47(2):54–62.
25. Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S. Paracetamol: New Vistas of an Old Drug. Vol. 12, CNS Drug Reviews. 2006.
26. Kingsley Ogemdi I. A Review on the Properties and Uses of Paracetamol. International Journal of Pharmacy and Chemistry. 2019;5(3):31.
27. Ellis F, Royal Society of Chemistry (Great Britain). Paracetamol : a curriculum resource. Royal Society of Chemistry; 2002. 24 p.
28. Cao F, Zhang M, Yuan S, Feng J, Wang Q, Wang W, et al. Transformation of acetaminophen during water chlorination treatment: kinetics and transformation products identification. Environmental Science and Pollution Research. 2016 Jun 1;23(12):12303–11.
29. Dargue R, Zia R, Lau C, Nicholls AW, Dare TO, Lee K, et al. Metabolism and Effects on Endogenous Metabolism of Paracetamol (Acetaminophen) in a Porcine Model of Liver Failure. Toxicological Sciences. 2020 May 1;175(1):87–97.
30. Cruz Carrillo M de J. Evaluación y Tratamiento de Contaminantes Emergentes (Fármacos Ácidos) en aguas residuales mediante un Reactor SBRLF acoplado a Fotocatálisis. Universidad Autónoma del Estado de Morelos; 2019.
31. Koagouw W, Arifin Z, Olivier GWJ, Ciocan C. High concentrations of paracetamol in effluent dominated waters of Jakarta Bay, Indonesia. Mar Pollut Bull. 2021 Aug 1;169.
32. Otoo BA, Amoabeng IA, Darko G, Borquaye LS. Antibiotic and analgesic residues in the environment – Occurrence and ecological risk study from the Sunyani municipality, Ghana. Toxicol Rep. 2022 Jan 1;9:1491–500.
33. Al-Khazrajy OSA, Boxall ABA. Risk-based prioritization of pharmaceuticals in the natural environment in Iraq. Environmental Science and Pollution Research. 2016 Aug 1;23(15):15712–26.
34. Méndez-Albores A, Tarín C, Rebollar-Pérez G, Dominguez-Ramirez L, Torres E. Biocatalytic spectrophotometric method to detect paracetamol in water samples. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015 Aug 24;50(10):1046–56.
35. Kim JW, Yoon SM, Lee SJ, Narumiya M, Nakada N, Han IS, et al. Occurrence and Fate of PPCPs Wastewater Treatment Plants in Korea. IPCBEE. 2012;35:1–5.
36. Pronschinske MA, Corsi SR, DeCicco LA, Furlong ET, Ankley GT, Blackwell BR, et al. Prioritizing Pharmaceutical Contaminants in Great Lakes Tributaries Using Risk-Based Screening Techniques. Environ Toxicol Chem. 2022 Sep 1;41(9):2221–39.
37. Wang C, Shi H, Adams CD, Gamagedara S, Stayton I, Timmons T, et al. Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry. Water Res. 2011;45(4):1818–28.
38. Fram MS, Belitz K. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Science of the Total Environment. 2011 Aug 15;409(18):3409–17.
39. Hu XL, Bao YF, Hu JJ, Liu YY, Yin DQ. Occurrence of 25 pharmaceuticals in Taihu Lake and their removal from two urban drinking water treatment plants and a constructed wetland. Environmental Science and Pollution Research. 2017 Jun 1;24(17):14889–902.
40. Pompei CME, Campos LC, da Silva BF, Fogo JC, Vieira EM. Occurrence of PPCPs in a Brazilian water reservoir and their removal efficiency by ecological filtration. Chemosphere. 2019 Jul 1;226:210–9.
41. Al Qarni H, Collier P, O’Keeffe J, Akunna J. Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia. Environmental Science and Pollution Research. 2016 Jul 1;23(13):13003–14.
42. White D, Lapworth DJ, Wayne C, Williams P. Tracking changes in the occurrence and source of pharmaceuticals within the river Thames,UK; from source to sea. Environmental Pollution. 2019;
43. Ramírez-Morales D, Masís-Mora M, Beita-Sandí W, Montiel-Mora JR, Fernández-Fernández E, Méndez-Rivera M, et al. Pharmaceuticals in farms and surrounding surface water bodies: Hazard and ecotoxicity in a swine production area in Costa Rica. Chemosphere. 2021 Jun 1;272.
44. Hayden KR, Jones M, Elkin KR, Shreve MJ, Clees WI, Clark S, et al. Impacts of the COVID-19 pandemic on pharmaceuticals in wastewater treated for beneficial reuse: Two case studies in central Pennsylvania. J Environ Qual. 2022 Sep 1;
45. Kim H, Homan M. Evaluation of pharmaceuticals and personal care products (PPCPs) in drinking water originating from Lake Erie. 2020.
46. Castañeda-Arriaga R, Galano A. Exploring Chemical Routes Relevant to the Toxicity of Paracetamol and Its meta-Analogue at a Molecular Level. Chem Res Toxicol. 2017 Jun 19;30(6):1286–301.
47. Cooperación Alemana. Manual para la cloración del agua en sistemas de abastecimiento de agua potable en el ámbito rural. 2017.
48. Hu J, Zhang LL, Chen JM, Liu Y. Degradation of paracetamol by Pseudomonas aeruginosa strain HJ1012. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2013 Jun 1;48(7):791–9.
49. Rios-Miguel AB, Smith GJ, Cremers G, van Alen T, Jetten MSM, Op den Camp HJM, et al. Microbial paracetamol degradation involves a high diversity of novel amidase enzyme candidates. Water Res X. 2022 Aug 1;16.
50. Waghmode M, Patil N, Gaikwad D. Bioremediation of Acetaminophen andHydroxychloroquine by Kosakonia cowanii JCM10956(T) with ecotoxicity studies. Res Sq. 2023;
51. Agrawal S, Khazaeni B. StatPearls. 2023 [cited 2023 Sep 12]. Acetaminophen Toxicity. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441917/
52. Żur J, Piński A, Marchlewicz A, Hupert-Kocurek K, Wojcieszyńska D, Guzik U. Organic micropollutants paracetamol and ibuprofen—toxicity, biodegradation, and genetic background of their utilization by bacteria. Vol. 25, Environmental Science and Pollution Research. Springer Verlag; 2018. p. 21498–524.
53. Minguez L, Pedelucq J, Farcy E, Ballandonne C, Budzinski H, Halm-Lemeille MP. Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environmental Science and Pollution Research [Internet]. 2016;23(6):4992–5001. Available from: https://doi.org/10.1007/s11356-014-3662-5
54. Dalmázio I, Alves TMA, Augusti R. An Appraisal on the Degradation of Paracetamol by TiO 2 /UV System in Aqueous Medium. Product Identification by Gas Chromatography-Mass Spectrometry (GC-MS). Vol. 19, J. Braz. Chem. Soc. 2008.
55. González-Labrada K, Quesada Penate I, Velichkova FA, Julcour-Lebigue C, Andriantsiferana C, Manero MH, et al. Degradation of paracetamol in aqueous solution: comparison of different uv induced advanced oxidation processes. Latin AMerican Applied Research. 2016;46(3):115–20.
56. Fleischmann T, Arras M, Sauer M, Saleh L, Rülicke T, Jirkof P. Voluntary intake of paracetamol-enriched drinking water and its influence on the success of embryo transfer in mice. Res Vet Sci. 2017 Apr 1;111:85–92.
57. Brillas E, Sirés I, Arias C, Cabot PL, Centellas F, Rodríguez RM, et al. Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Chemosphere. 2005 Jan;58(4):399–406.
58. López Zavala MÁ, Jaber Lara CR. Degradation of paracetamol and its oxidation products in surface water by electrochemical oxidation. Environ Eng Sci. 2018 Nov 1;35(11):1248–54.
59. Alobaidi RAK, Ulucan-Altuntas K, Mhemid RKS, Manav-Demir N, Cinar O. Biodegradation of emerging pharmaceuticals from domestic wastewater by membrane bioreactor: The effect of solid retention time. Int J Environ Res Public Health. 2021 Apr 1;18(7).
60. Edrees W, Naji KM, Abdullah QYM, Al-kaf A. Biodegradation of Paracetamol by Native Fungal Species Inhabiting Wastewater of a Pharmaceutical Factory in Sana’a, Yemen. Universal Journal of Pharmaceutical Research. 2017;
61. De Gusseme B, Vanhaecke L, Verstraete W, Boon N. Degradation of acetaminophen by Delftia tsuruhatensis and Pseudomonas aeruginosa in a membrane bioreactor. Water Res. 2011;45(4):1829–37. 62. López Zavala MÁ, Vega DA, Álvarez Vega JM, Castillo Jerez OF, Cantú Hernández RA. Electrochemical oxidation of acetaminophen and its transformation products in surface water: effect of pH and current density. Heliyon. 2020 Feb 1;6(2).
63. Butkovskyi A. Removal of micropollutants in source separated sanitation. Wageningen University ; 2015.
64. Escapa C, Coimbra RN, Paniagua S, García AI, Otero M. Paracetamol and salicylic acid removal from contaminated water by microalgae. J Environ Manage. 2016 Dec 1;203:799–806.
65. Matamoros V, Gutiérrez R, Ferrer I, García J, Bayona JM. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study. J Hazard Mater. 2015 May 5;288:34–42.
66. Zhang L, Hu J, Zhu R, Zhou Q, Chen J. Degradation of paracetamol by pure bacterial cultures and their microbial consortium. Appl Microbiol Biotechnol. 2013 Apr;97(8):3687–98.
67. Enguita FJ, Pereira S, Leitão AL. Transcriptomic Analysis of Acetaminophen Biodegradation by Penicillium chrysogenum var. halophenolicum and Insights into Energy and Stress Response Pathways. Journal of Fungi. 2023 Apr 1;9(4).
68. George Haikal NKK, Razali IA, Wan Hanafi WN, Geraldi A, Ni’Matuzahroh, Fatimah, et al. SUSTAINABLE BIOREMEDIATION OF ACETAMINOPHEN USING BACTERIA: A REVIEW. J Sustain Sci Manag. 2023;18(6):149–60.
69. Wu S, Zhang L, Chen J. Paracetamol in the environment and its degradation by microorganisms. Appl Microbiol Biotechnol. 2012 Nov;96(4):875–84.
70. Chopra S, Kumar D. Characterization, optimization and kinetics study of acetaminophen degradation by Bacillus drentensis strain S1 and waste water degradation analysis. Bioresour Bioprocess. 2020 Dec 1;7(1).
71. Hart A, Orr DLJ. The degradation of paracetamol (4-hydroxyacetanilide) and other substituted acetanilides by a Penicillium species. Vol. 41, Antonie van Leeuwenhoek. 1975.
72. Edrees W, Naji KM, Abdullah QYM, Al-kaf A. A review on comparative study between the physicochemical and biological processes for paracetamol degradation. Universal Journal of Pharmaceutical Research. 2017;
73. Buratti S, Rinaldi F, Calleri E, Bernardi M, Oliva D, Malgaretti M, et al. Ganoderma resinaceum and Perenniporia fraxinea: Two Promising Wood Decay Fungi for Pharmaceutical Degradation. Journal of Fungi. 2023 May 1;9(5).
74. Safi C, Zebib B, Merah O, Pontalier PY, Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Vol. 35, Renewable and Sustainable Energy Reviews. Elsevier Ltd; 2014. p. 265–78.
75. Escapa C, Coimbra RN, Nuevo C, Vega S, Paniagua S, García AI, et al. Valorization of microalgae biomass by its use for the removal of paracetamol from contaminated water. Water (Switzerland). 2017 Apr 28;9(5)