Celdas microbianas de combustible: Fundamentos y aplicaciones
DOI:
https://doi.org/10.18041/2323-0320/microciencia..2023.12591Palabras clave:
Biolectrogénesis, metabolismo, microorganismos, biodegradación, celda de combustible microbianaResumen
En este documento se establecen los aspectos de mayor importancia que incide sobre una celda microbiana de combustible (MFC), tratando temáticas tales como el metabolismo y el proceso de generación de energía por parte de microorganismos electrogénicos, la arquitectura, aplicaciones y limitación de este producto biotecnológico. En el último siglo, estos sistemas bioelectroquímicos han sido de gran interés en la investigación debió a que la bioenergía es una energía renovable que desempeña un papel vital en la creciente demanda energética actual y las MFC pueden utilizar diversos sustratos tanto sólidos (compuestos orgánicos, lodos, sedimentos marinos, subproductos agroindustriales) como líquidos (aguas residuales, orina). La celda microbiana de combustible ofrece la posibilidad de convertir compuestos orgánicos en electricidad mediante el metabolismo de dichos microorganismos al crear subproductos, entre los que están diferentes iones que son liberados hacia el medio extracelular. En estos dispositivos se coloca un electrodo como aceptor final para captar los electrones que liberan los microorganismos al degradar la materia orgánica. Este artículo busca establecer parámetros básicos de lo que son los microorganismos electrogénicos y su aplicación en la creación de baterías de combustible microbiano
Descargas
Referencias
1. Akçaba S, Eminer F. Evaluation of strategic energy alternatives determined for Northern Cyprus with SWOT based MCDM integrated approach. Energy Reports [Internet]. 2022;8:11022–38. Available from: https://doi.org/10.1016/j.egyr.2022.08.227 2.
2.International Energy Agency. Real-world policy packages for sustainable energy transitions. Int Energy Agency [Internet]. 2017; Available from: https://www.iea.org/reports/real-world-policy-packages-for-sustainable-energytransitions
3. Bnamericas. Los 10 principales proyectos latinoamericanos de energía renovable [Internet]. 2017. Available from: https://www.bnamericas.com/es/noticias/jueves-los10-principales-proyectos-latinoamericanos--de-energia-renovable
4. López JH. La crisis energetica mundial: Una oportunidad para Colombia. Dyna [Internet]. 2005;72(147):103–16. Available from: http://www.redalyc.org/articulo.oa?id=49614712
5. Revelo DM, Hurtado NH, Ruiz JO. Celdas de combustible microbianas (CCMs): Un reto para la remoción de materia orgánica y la generación de energía eléctrica. Inf Tecnol [Internet]. 2013;24(6):17–28. Available from: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07642013000600004
6. Potter MC. Electrical effects accompanying the decomposition of organic compounds. Proc R Soc London Ser B, Contain Pap a Biol Character [Internet]. 1911;84(571):260– 76. Available from: https://royalsocietypublishing.org/doi/10.1098/rspb.1911.0073 7.
7. Andrés G, Gómez H, Alejandro M, Olvera S. La plurifuncionalidad de las bacterias electrogénicas. Univ potosinos. 2017;211:4–10.
8. Revelo Romo DM, Hurtado Gutiérrez NH, Ruiz Pazos JO, Pabón Figueroa LV, Ordóñez Ordóñez LA. Bacterial diversity in the Cr(VI) reducing biocathode of a Microbial Fuel Cell with salt bridge. Rev Argent Microbiol [Internet]. 2019;51(2):110– 8. Available from: https://www.sciencedirect.com/science/article/pii/S0325754118300610
9. Zhang L, Zeng Q, Liu X, Chen P, Guo X, Ma LZ, et al. Iron reduction by diverse actinobacteria under oxic and pH-neutral conditions and the formation of secondary minerals. Chem Geol [Internet]. 2019;525(January):390–9. Available from:
https://doi.org/10.1016/j.chemgeo.2019.07.038
10. Sanchez JL, Laberty-Robert C. A novel microbial fuel cell electrode design: Prototyping a self-standing one-step bacteria-encapsulating bioanode with electrospinning. J Mater Chem B [Internet]. 2021;9(21):4309–18. Available from: https://pubs.rsc.org/en/content/articlelanding/2021/tb/d1tb00680k
11. Pepè Sciarria T, Arioli S, Gargari G, Mora D, Adani F. Monitoring microbial communities’ dynamics during the start-up of microbial fuel cells by high-throughput screening techniques. Biotechnol Reports [Internet]. 2019;21(2018):e00310. Available from: https://doi.org/10.1016/j.btre.2019.e00310
12. Chung K, Okabe S. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Appl Microbiol Biotechnol [Internet]. 2009;83(5):965–77. Available from: https://pubmed.ncbi.nlm.nih.gov/19404637/
13. Mancílio LBK, Ribeiro GA, Lopes EM, Kishi LT, Martins-Santana L, de Siqueira GMV, et al. Unusual microbial community and impact of iron and sulfate on microbial fuel cell ecology and performance. Curr Res Biotechnol [Internet]. 2020;2:64–73. Available from: https://www.sciencedirect.com/science/article/pii/S259026282030006X
14. Majid B. Electrogenic bacteria — How much have we really known? Students corner Lett to Ed [Internet]. 2019;(April):1110. Available from: https://pubmed.ncbi.nlm.nih.gov/31201413/
15. Serment Guerrero JH, Lara Rivera EA, Becerril Varela K, Suárez Contreras S, Ramírez Durán N. Detección y aislamiento de microorganismos exoelectrógenos a partir de lodos del río Lerma, Estado de México, México. Rev Int Contam Ambient [Internet]. 2017;33(4):617–28. Available from: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188- 49992017000400617&lng=es&nrm=iso
16. Aiyer KS. Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance. Heliyon [Internet]. 2021;7(1):e05935. Available from: http://dx.doi.org/10.1016/j.heliyon.2021.e05935
17. Romero Mejía AA, Vásquez JA, Lugo González A. Bacterias, fuente de energía para el futuro. Rev Tecnura [Internet]. 2012;16(32):117. Available from: http://www.scielo.org.co/pdf/tecn/v16n32/v16n32a11.pdf
18. Schoffeniels E, Margineanu D. Cell Membranes and Bioelectrogenesis. In 1990. p. 30– 53. Available from: http://link.springer.com/10.1007/978-94-009-2143-6_2
19. Sacco NJ, Bonetto MC, Cortón E. Isolation and Characterization of a Novel Electrogenic Bacterium, Dietzia sp. RNV-4. Yang S, editor. PLoS One [Internet]. 2017 Feb 13;12(2):e0169955. Available from: https://dx.plos.org/10.1371/journal.pone.0169955
20. Vega L autonoma de barcelona. Microorganismos bioelectrogenicos : ¿Qué son y cómo se utilizan? [Internet]. Barcelona; 2008. Available from: https://ddd.uab.cat/pub/tfg/2015/143673/TFG_lissetdelavegacorrea.pdf
21. Das S, Das S, Das I, Ghangrekar MM. Application of bioelectrochemical systems for carbon dioxide sequestration and concomitant valuable recovery: A review. Mater Sci Energy Technol [Internet]. 2019;2(3):687–96. Available from: https://doi.org/10.1016/j.mset.2019.08.003
22. Khater DZ, El-Khatib KM, Hassan RYA. Effect of vitamins and cell constructions on the activity of microbial fuel cell battery. J Genet Eng Biotechnol [Internet]. 2018;16(2):369–73. Available from: https://doi.org/10.1016/j.jgeb.2018.02.011
23. Lateef HA, Bright TE, Peterman D, Colgan CJ, Benton LA. From Waste to Wealth : Making Millivolts from Microbes! J Emerg Investig [Internet]. 2021;4(6):1–5. Available from: https://emerginginvestigators.org/articles/from-waste-to-wealthmaking-millivolts-from-microbes
24. Liu SH, Su YH, Chen CC, Lin CW, Huang WJ. Simultaneous enhancement of copper removal and power production using a sediment microbial fuel cell with oxygen separation membranes. Environ Technol Innov [Internet]. 2022;26:102369. Available from: https://doi.org/10.1016/j.eti.2022.102369
25. Álvarez, Ortiz; Moreno, L; Jumenez L. Bacterias eléctricas. Dialnet [Internet]. 2011;4:74–7. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=3837978
26. Logan BE, Rossi R, Ragab A, Saikaly PE. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol [Internet]. 2019;17(5):307–19. Available from: https://www.nature.com/articles/s41579-019-0173-x
27. Krithika T, Kavitha R, Dinesh M, Angayarkanni J. Assessment of ligninolytic bacterial consortium for the degradation of azo dye with electricity generation in a dualchambered microbial fuel cell. Environ Challenges [Internet]. 2021;4(January):100093. Available from: https://doi.org/10.1016/j.envc.2021.100093
28. Pareek A, Shanthi Sravan J, Venkata Mohan S. Exploring chemically reduced graphene oxide electrode for power generation in microbial fuel cell. Mater Sci Energy Technol [Internet]. 2019;2(3):600–6. Available from: https://doi.org/10.1016/j.mset.2019.06.006
29. M DK, S MD, Pugazhendi A, Jamal MT, S AK, Kumar G, et al. Generation of Electricity From Anaerobically Treated Leachate Using Up Flow Microbial Fuel Cell. e-Prime - Adv Electr Eng Electron Energy [Internet]. 2021;1(October):100011. Available from: https://www.sciencedirect.com/science/article/pii/S2772671121000115
30. Song TS, Tan WM, Wu XY, Zhou CC. Effect of graphite felt and activated carbon fiber felt on performance of freshwater sediment microbial fuel cell. J Chem Technol Biotechnol. 2012;87(10):1436–40.
31. Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. J Power Sources [Internet]. 2017;356:225–44. Available from: http://dx.doi.org/10.1016/j.jpowsour.2017.03.109
32. Redondo J. Microorganismos electrogénicos: células de combustible microbianas. [Internet]. Vol. I, 26/27. 2018. Available from: https://ebuah.uah.es/dspace/handle/10017/37227https://ebuah.uah.es/dspace/handle/100 17/37227
33. Carmona AA. Obtención de energía eléctrica directa de una celda de combustible microbiana mediante el tratamiento de lixiviados de la producción fermentativa de H2 [Internet]. Centro de investigación y de estudios avanzados del instituto politecnico Nacional; 2008. Available from: https://www.researchgate.net/profile/AlessandroCarmona/publication/313651774_MSc_Thesis_Electricity_production_in_a_microbial _fuel_cell_fed_with_spent_organic_extracts_from_hydrogenogenic_fermentation_of_o rganic_solid_wastes/links/58a197a5aca272046aae413
34. Hashem A. Microbial Fuel Cell (MFC) Application for Generation of Electricity from Dumping Rubbish and Identification of Potential Electrogenic Bacteria. Adv Ind Biotechnol [Internet]. 2019;2(1):1–8. Available from: https://www.heraldopenaccess.us/openaccess/microbial-fuel-cell-mfc-application-forgeneration-of-electricity-from-dumping-rubbish-and-identification-of-potentialelectrogenic-bacteria
35. Umar MF, Rafatullah M, Abbas SZ, Mohamad Ibrahim MN, Ismail N. Advancement in benthic microbial fuel cells toward sustainable bioremediation and renewable energy production. Int J Environ Res Public Health [Internet]. 2021;18(7). Available from: https://pubmed.ncbi.nlm.nih.gov/33917378/
36. Huarachi-Olivera R, Dueñas-Gonza A, Yapo-Pari U, Vega P, Romero-Ugarte M, Tapia J, et al. Bioelectrogenesis with microbial fuel cells (MFCs) using the microalga Chlorella vulgaris and bacterial communities. Electron J Biotechnol [Internet]. 2018;31:34–43. Available from: https://doi.org/10.1016/j.ejbt.2017.10.013
37. Sánchez C, Dessì P, Duffy M, Lens PNL. Gauging sediment microbial fuel cells using open-circuit auxiliary electrodes. J Power Sources [Internet]. 2022;527(February). Available from: https://www.sciencedirect.com/science/article/pii/S037877532200235X
38. Pamintuan KRS, Sanchez KM. Power generation in a plant-microbial fuel cell assembly with graphite and stainless steel electrodes growing Vigna Radiata. IOP Conf Ser Mater Sci Eng [Internet]. 2019;703(1). Available from: https://iopscience.iop.org/article/10.1088/1757-899X/703/1/012037