Medios de cultivo a partir de residuos agroindustriales sólidos para el crecimiento de la levadura saccharomyces cerevisiae

Palabras clave

medios naturales
medios comerciales
Saccharomyces cerevisiae
método ecométrico


El presente trabajo se llevó acabo para evaluar la promoción del crecimiento de diferentes medios de cultivos naturales frente a los medios comerciales PDA y Agar nutritivo en la cepa de Saccharomyces cerevisiae activada de levadura seca. La promoción del crecimiento fue evaluada con el Índice de Crecimiento Absoluto (ICA) en los diferentes medios de cultivos naturales y utilizando el método ecométrico. Los análisis ICA para comparar el crecimiento de la cepa en los diferentes medios naturales demostraron que el crecimiento fue muy poco, pero la explicación estuvo en que la cepa de S. cerevisiae estaba con varios repiques previos y habia perdido su vitalidad, ya que ni siquiera el medio de cultivo estandar PDA arrojo un ICA altamente productivo.


1. Condayan C. Culture media. Nat Rev Microbiol [Internet]. 2008 Sep 1 [cited 2017 Nov 18];6(9):646–646. Available from:

2. Crisley Fd, Peeler Jt, Angelotti R. Comparative evaluation of five selective and differential media for the detection and enumeration of coagulase-positive staphylococci in foods. Appl Microbiol [Internet]. 1965 Mar [cited 2017 Nov 19];13(2):140–56. Available from:

3. Wang JD, Levin PA. Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol [Internet]. 2009 [cited 2017 Oct 4];7(11):822–7. Available from:

4. Berde C V, Berde VB. Vegetable Waste as Alternative Microbiological Media for Laboratory and Industry. World J Pharm Pharm Sci 4 (5), 1488. 2015;4(5):1488 – 1494.

5. Basu S, Bose C, Ojha N, Das N, Das J, Pal M, et al. Evolution of bacterial and fungal growth media. Bioinformation [Internet]. 2015 [cited 2017 Nov 19];11(4):182–4. Available from:

6. Mohamed Mohamed Yasseen Elghandour M. Saccharomyces cerevisiae y su impacto sobre la capacidad fermentativa microbiana en herbívoros. 2016 [cited 2017 Nov 17]; Available from:

7. Reis VR, Bassi APG, Silva JCG da, Ceccato-Antonini SR. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation. Brazilian J Microbiol [Internet]. 2013 [cited 2017 Nov 19];44(4):1121–31. Available from:

8. American Society of Enologists. CL, Brown JA, Olineka TL, Cocolin L, Mills DA, Bisson LF. American journal of enology and viticulture. [Internet]. Vol. 52, American Journal of Enology and Viticulture. American Society of Enologists; 2001 [cited 2017 Nov 17]. 198-203 p. Available from:

9. van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, et al. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: Current status. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 2006;90(4):391–418.

10. Mossel DA, Bonants-Van Laarhoven TM, Ligtenberg-Merkus AM, Werdler ME. Quality assurance of selective culture media for bacteria, moulds and yeasts: an attempt at standardization at the international level. J Appl Bacteriol [Internet]. 1983 Jun [cited 2017 Nov 19];54(3):313–27. Available from:

11. Uthayasooriyan M, Pathmanathan S, Ravimannan N, Sathyaruban S. Formulation of alternative culture media for bacterial and fungal growth. Der Pharm Lett. 2016;8(1):444–9.

12. Schneider-Poetsch T, Ju J, Eyler DE, Dang Y, Bhat S, Merrick WC, et al. Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol [Internet]. 2010 Mar [cited 2017 Nov 19];6(3):209–17. Available from:

13. Mantilla C, Mendoza C, Oviedo L. Productividad y selectividad del medio de cultivo a partir de guayaba agria (Psidium araca) en el crecimiento de levaduras nativas del género Candida sp. Rev Colomb Biotecnol [Internet]. 2010;12(2):116–23. Available from:

14. Wilson CW, Shaw PE, Campbell CW. Determination of organic acids and sugars in guava (Psidium guajava L.) cultivars by high-performance liquid chromatography. J Sci Food Agric [Internet]. 1982 Aug 1 [cited 2017 Nov 17];33(8):777–80. Available from:

15. Chang S, Cho MH, Kang BG, Kaufman PB. Changes in starch content in oat (Avena sativa) shoot pulvini during the gravitropic response. J Exp Bot [Internet]. 2001 May 1 [cited 2017 Nov 19];52(358):1029–40. Available from:

16. Xing S, Meng X, Zhou L, Mujahid H, Zhao C, Zhang Y, et al. Proteome Profile of Starch Granules Purified from Rice (Oryza sativa) Endosperm. PLoS One [Internet]. 2016 [cited 2017 Nov 19];11(12):e0168467. Available from:

17. Akao T, Yashiro I, Hosoyama A, Kitagaki H, Horikawa H, Watanabe D, et al. Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res [Internet]. 2011 Dec 1 [cited 2017 Nov 18];18(6):423–34. Available from:

18. Duarte-Delgado D, Ñústez-López C-E, Narváez-Cuenca C-E, Restrepo-Sánchez L-P, Melo SE, Sarmiento F, et al. Natural variation of sucrose, glucose and fructose contents in Colombian genotypes of Solanum tuberosum Group Phureja at harvest. J Sci Food Agric [Internet]. 2016 Sep 1 [cited 2017 Nov 19];96(12):4288–94. Available from:

19. Changes in carbohydrate and glucosinolate composition in white cabbage (Brassica oleracea var. capitata) during blanching and treatment with acetic acid. Food Chem [Internet]. 2006 Mar 1 [cited 2017 Nov 19];95(2):226–36. Available from:

20. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J Food Compos Anal [Internet]. 2016 Jun 1 [cited 2017 Nov 19];49:19–34. Available from:

21. Castillo B, Pinzón AM, Londoño MT. Characterization of the mechanical properties of chives (Allium schoenoprasum L.). Agron Colomb [Internet]. 1983 Jan 1 [cited 2017 Nov 19];31(1):83–8. Available from:

22. Dorais M, Ehret DL, Papadopoulos AP. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev [Internet]. 2008 Jul 6 [cited 2017 Nov 19];7(2):231–50. Available from:

23. Kalavacharla V, Liu Z, Meyers BC, Thimmapuram J, Melmaiee K. Identification and analysis of common bean (Phaseolus vulgaris L.) transcriptomes by massively parallel pyrosequencing. BMC Plant Biol [Internet]. 2011 Oct 11 [cited 2017 Nov 19];11(1):135. Available from:

24. Russell SH, Evert RF. Leaf vasculature in Zea mays L. Planta [Internet]. 1985 [cited 2017 Nov 19];164(4):448–58. Available from:

25. Fiala V, Glad C, Martin M, Jolivet E, Derridj S. Occurrence of soluble carbohydrates on the phylloplane of maize (Zea mays L.): variations in relation to leaf heterogeneity and position on the plant. New Phytol [Internet]. 1990 Aug 1 [cited 2017 Nov 19];115(4):609–15. Available from:

26. Leach KA, Braun DM, Leach KA, Braun DM. Soluble Sugar and Starch Extraction and Quantification from Maize ( Zea mays ) Leaves. In: Current Protocols in Plant Biology [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2016 [cited 2017 Nov 19]. p. 139–61. Available from:

27. Cordenunsi B, Saura-Calixto F, Diaz-Rubio ME, Zuleta A, Tiné MA, Silveira Buckeridge M, et al. Carbohydrate composition of ripe pineapple (cv. perola) and the glycemic response in humans. 2009 [cited 2017 Nov 19];(5004023). Available from:

28. Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. An update. J Ethnopharmacol [Internet]. 1988 Feb 1 [cited 2017 Nov 19];22(2):191–203. Available from:

29. Bongoni R, Stieger M, Dekker M, Steenbekkers B, Verkerk R. Sensory and health properties of steamed and boiled carrots ( Daucus carota ssp. sativus ). Int J Food Sci Nutr [Internet]. 2014 Nov 25 [cited 2017 Nov 19];65(7):809–15. Available from:


La descarga de datos todavía no está disponible.