Análisis Cienciométrico: Desarrollo tecnológico en la producción de café

Autores/as

  • Julian Jose Lopez Espana Universidad Nacional de Colombia
  • Fabian Andres Jimenez Armenta Universidad Nacional de Colombia
  • Diego Andres Cervantes-Suarez Universidad Nacional de Colombia
  • Brando Nicolas Botello-Mahecha Universidad Nacional de Colombia

DOI:

https://doi.org/10.18041/2619-4465/interfaces.2.13408

Palabras clave:

Producción de café, Desarrollo tecnológico, Análisis cienciométrico, Agricultura de precisión, Innovación agrícola

Resumen

En los últimos años, la tecnología aplicada al cultivo de café ha comenzado a desempeñar un papel más destacado en el ámbito académico, convirtiéndose en un tema de creciente interés para investigadores de diversas regiones. Esta revisión cienciométrica se centró en examinar 291 estudios publicados entre 2004 y 2024, obtenidos de las bases de datos Scopus y Web of Science, con el objetivo de comprender cómo ha evolucionado el conocimiento científico respecto a la incorporación de tecnología en la caficultura. Uno de los hallazgos más notables es el dominio de Brasil, tanto en volumen de publicaciones como en su impacto reflejado en las citas. En contraste, Colombia —a pesar de su fuerte tradición cafetera— muestra una participación científica muy limitada. El estudio también identifica un aumento en la producción académica a partir de 2019, lo que parece coincidir con la adopción de herramientas de agricultura de precisión, el uso de sensores y la automatización para optimizar la cosecha y el procesamiento postcosecha. Estos resultados ofrecen una perspectiva clara sobre las brechas de investigación y las oportunidades para que países con tradición cafetera fortalezcan su desarrollo tecnológico e innovación.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

[1] V. Poncet, P. van Asten, C.P. Millet, P. Vaast, C. Allinne, “Which diversification trajectories make coffee farming more sustainable? Current Opinion in Environmental Sustainability” [Internet]. 2024 Jun 1 [cited 2025 Jun 3];68:101432. Available from: http://dx.doi.org/10.1016/j.cosust.2024.101432

[2] L.S, Santana, G. Araujo, S. Ferraz, AJ da S. Teodoro, S. . Santana, G. Rossi, E. Palchetti, “Advances in Precision Coffee Growing Research: A Bibliometric Review. Agronomy” [Internet]. 2021 Aug 5 [cited 2025 Jun 6];11(8):1557. Available from: https://www.mdpi.com/2073-4395/11/8/1557

[3]Cenicafe, Informe Anual, 2024 [Internet]. [cited 2025 Jun 6]. Available from: https://publicaciones.cenicafe.org/index.php/infanual/issue/view/2092

[4] S. Jaramillo, “La Agricultura Regenerativa: un nuevo enfoque para la producción sostenible de café en Colombia”. MS [Internet]. 2024 Jul 11 [cited 2025 May 7];75:e750711_1–e750711_1. Available from: https://publicaciones.cenicafe.org/index.php/memorias/article/view/1571

[5]G. Mora-Pérez, K. Villagra-Mendoza, S. Arriola-Valverde, “Evaluación del comportamiento del índice de humedad y vegetación en un cultivo de café por medio de sensores remotos utilizando Vehículos Aéreos no Tripulados”. TM, vol. 38, n.º 2, pp. Pág. 63–76, abr. 2025. [cited 2025 May 7]. Available from: https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/7133

[6] JLD. Martinez, D. Salcedo, Universidad de la Costa-CUC, Mercado T, Universidad de Córdoba, et al. Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo. RISTI - Rev Ibér Sist Tecnol Inf [Internet]. 2024 Mar 30;(53):106–21. Available from: https://scielo.pt/scielo.php?script=sci_arttext&pid=S1646-98952024000100106&lng=pt&nrm=iso&tlng=es

[7] CH de. Freitas, R.D. Coelho, J de O. Costa, P. C. Sentelhas, Smart Coffee: Machine Learning Techniques for Estimating Arabica Coffee Yield. AgriEngineering [Internet]. 2024 Dec 20 [cited 2025 Jun 6];6(4):4925–42. Available from: https://www.mdpi.com/2624-7402/6/4/281

[8] M. Jonak, J. Mucha, S. Jezek, D. Kovac, K. Cziria, AI. SPAGRI:”Smart precision agriculture dataset of aerial images at different heights for crop and weed detection using super-resolution”. Agric Syst [Internet]. 2024 Apr;216(103876):103876. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308521X2400026X

[9] MA. Magne, A. Alaphilippe, A. Bérard, S. Cournut, B. Dumont, M. Gosme, et al. Applying assessment methods to diversified farming systems: Simple adjustment or complete overhaul? Agric Syst [Internet]. 2024 May;217(103945):103945. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308521X24000957

[10]E. Largo-Avila, C. H. S. Rodríguez, and J. D. R. Granada, “Tendencias de investigación emergentes en cafés especiales: un análisis bibliométrico,” rev.investig.agrar.ambient., vol. 15, no. 1, pp. 71–95, 2024, doi: 10.22490/21456453.6558. Available: https://hemeroteca.unad.edu.co/index.php/riaa/article/view/6558. [Accessed: Jun. 06, 2025]

[11]X. Li, M. Wang, and X. Liu, “Predicting collaborative relationship among scholars by integrating scholars’ content-based and structure-based features,” Scientometrics, vol. 129, no. 6, pp. 3225–3244, Jun. 2024, doi: 10.1007/s11192-024-05012-4. Available: https://link.springer.com/10.1007/s11192-024-05012-4

[12]I. Piccoli et al., “Hydrogels for agronomical application: from soil characteristics to crop growth: a review,” Agron. Sustain. Dev., vol. 44, no. 2, Apr. 2024, doi: 10.1007/s13593-024-00958-4. Available: https://link.springer.com/10.1007/s13593-024-00958-4

[13]H. Madrid-Casaca, G. Salazar-Sepúlveda, N. Contreras-Barraza, M. Gil-Marín, and A. Vega-Muñoz, “Global Trends in Coffee Agronomy Research,” Agronomy, vol. 11, no. 8, p. 1471, Jul. 2021, doi: 10.3390/agronomy11081471. Available: https://www.mdpi.com/2073-4395/11/8/1471. [Accessed: Jun. 06, 2025]

[14]D. Porras, J. Carrasco, P. Carrasco, S. Alfageme, D. Gonzalez-Aguilera, and R. Lopez Guijarro, “Drone magnetometry in mining research. An application in the study of Triassic cu–co–Ni mineralizations in the Estancias mountain range, Almería (Spain),” Drones, vol. 5, no. 4, p. 151, Dec. 2021, doi: 10.3390/drones5040151. Available: https://www.mdpi.com/2504-446X/5/4/151

[15]C. D. Rodriguez Pabon, J. Sánchez-Benitez, J. Ruiz-Rosero, and G. Ramirez-Gonzalez, “Coffee crop science metric: A review,” Coffee Sci., vol. 15, pp. 1–11, 2020, doi: 10.25186/.v15i.1693. Available: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1693

[16]R. A. P. Barata et al., “UAV-Based Vegetation Indices to Evaluate Coffee Crop Response after Transplanting Seedlings Grown in Different Containers,” Agriculture, vol. 14, no. 3, p. 356, Feb. 2024, doi: 10.3390/agriculture14030356. Available: https://www.mdpi.com/2077-0472/14/3/356. [Accessed: Jun. 09, 2025]

[17]A. J. de Souza et al., “Crotalaria juncea L. enhances the bioremediation of sulfentrazone-contaminated soil and promotes changes in the soil bacterial community,” Brazilian Journal of Microbiology, vol. 54, no. 3, pp. 2319–2331, Aug. 2023, doi: 10.1007/s42770-023-01064-5. Available: https://link.springer.com/article/10.1007/s42770-023-01064-5. [Accessed: Jun. 09, 2025]

[18]M. V. da Costa et al., “Fast, in situ, and eco-friendly determination of Mn in plant leaves using portable X-ray fluorescence spectrometry for agricultural and environmental applications,” Environmental Monitoring and Assessment, vol. 197, no. 3, pp. 1–10, Feb. 2025, doi: 10.1007/s10661-025-13692-5. Available: https://link.springer.com/article/10.1007/s10661-025-13692-5. [Accessed: Jun. 09, 2025]

[19]M. T. Cassia, R. P. da Silva, C. A. Chioderolli, R. H. F. Noronha, and E. P. dos Santos, “Quality of mechanized coffee harvesting in circular planting system,” Cienc. Rural, vol. 43, no. 1, pp. 28–34, Jan. 2013, doi: 10.1590/S0103-84782012005000148. Available: https://www.scielo.br/j/cr/a/7LnYmpcQz4Lhttb4M8TG9CQ/?lang=en&format=pdf. [Accessed: Jun. 09, 2025]

[20]“Transcriptional memory contributes to drought tolerance in coffee (Coffea canephora) plants,” Environmental and Experimental Botany, vol. 147, pp. 220–233, Mar. 2018, doi: 10.1016/j.envexpbot.2017.12.004. Available: http://dx.doi.org/10.1016/j.envexpbot.2017.12.004. [Accessed: Jun. 09, 2025]

[21]V. A. Silva, G. Marchi, L. R. G. Guilherme, J. M. de Lima, F. D. Nogueira, and P. T. G. Guimarães, “Kinetics of K release from soils of Brazilian coffee regions: effect of organic acids,” Rev. Bras. Ciênc. Solo, vol. 32, no. 2, pp. 533–540, Apr. 2008, doi: 10.1590/S0100-06832008000200008. Available: https://www.scielo.br/j/rbcs/a/J3bQ4RxTyXBHxNMZwwMQNrN/?lang=en&format=pdf. [Accessed: Jun. 09, 2025]

[22]E. L. Balota et al., “SOIL QUALITY IN RELATION TO FOREST CONVERSION TO PERENNIAL OR ANNUAL CROPPING IN SOUTHERN BRAZIL,” Rev. Bras. Ciênc. Solo, vol. 39, no. 4, pp. 1003–1014, 2015, doi: 10.1590/01000683rbcs20140675. Available: https://www.scielo.br/j/rbcs/a/NSYMpFg8py7Jt95f3jFGBgM/?lang=en&format=pdf. [Accessed: Jun. 09, 2025]

[23]T. Leroy et al., “Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes,” Theoretical and Applied Genetics, vol. 111, no. 6, pp. 1032–1041, Aug. 2005, doi: 10.1007/s00122-005-0018-z. Available: https://link.springer.com/article/10.1007/s00122-005-0018-z. [Accessed: Jun. 09, 2025]

[24]J. J. C. Silva et al., “Can coffee and cocoa cultivation restore intensively grazed dark earth of the Amazon rainforest?,” European Journal of Soil Science, vol. 75, no. 6, p. e70020, Nov. 2024, doi: 10.1111/ejss.70020. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/ejss.70020. [Accessed: Jun. 09, 2025]

[25]“Coffea arabica L. genes from isoprenoid metabolic pathways are more expressed in full sun cultivation systems than in agroforestry systems,” Plant Gene, vol. 26, p. 100287, Jun. 2021, doi: 10.1016/j.plgene.2021.100287. Available: http://dx.doi.org/10.1016/j.plgene.2021.100287. [Accessed: Jun. 09, 2025]

[26]“Website.” doi: 10.1016/j.plaphy.2020.11.042. Available: https://doi.org/10.1016/j.plaphy.2020.11.042

[27]“Effects of geographical origin and post-harvesting processing on the bioactive compounds and sensory quality of Brazilian specialty coffee beans,” Food Research International, vol. 186, p. 114346, Jun. 2024, doi: 10.1016/j.foodres.2024.114346. Available: http://dx.doi.org/10.1016/j.foodres.2024.114346. [Accessed: Jun. 09, 2025]

[28]M. C. Blassioli-Moraes et al., “Influence of constitutive and induced volatiles from mature green coffee berries on the foraging behaviour of female coffee berry borers, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae),” Arthropod-Plant Interactions, vol. 13, no. 3, pp. 349–358, Sep. 2018, doi: 10.1007/s11829-018-9631-z. Available: https://link.springer.com/article/10.1007/s11829-018-9631-z. [Accessed: Jun. 09, 2025]

[29]L. S. Resende, É. P. Botrel, E. A. Pozza, K. de C. Roteli, O. C. de Souza Andrade, and R. C. M. Pereira, “Effect of soil moisture, organic matter and fertilizer application on brown eye spot disease in coffee plantations,” European Journal of Plant Pathology, vol. 163, no. 2, pp. 351–367, Mar. 2022, doi: 10.1007/s10658-022-02481-2. Available: https://link.springer.com/article/10.1007/s10658-022-02481-2. [Accessed: Jun. 09, 2025]

[30]M. L. Ferreira et al., “Effects of the climate change scenario on Coffea canephora production in Brazil using modeling tools,” Tropical Ecology, vol. 65, no. 4, pp. 559–571, May 2024, doi: 10.1007/s42965-024-00350-z. Available: https://link.springer.com/article/10.1007/s42965-024-00350-z. [Accessed: Jun. 09, 2025]

[31]L. C. F. Freitas and M. L. G. Renó, “Environmental and economic evaluation of coffee residues,” Eng. Sanit. Ambient., vol. 27, no. 4, pp. 715–721, Aug. 2022, doi: 10.1590/S1413-415220210159. Available: https://www.scielo.br/j/esa/a/VzMTJdrdT4FnP4mkJsLW9Bp/?lang=en&format=pdf. [Accessed: Jun. 09, 2025]

[32]“Website.” doi: 10.1590/S0100-06832014000500. Available: https://doi.org/10.1590/S0100-06832014000500

[33]J. Jaramillo, C. Borgemeister, and P. Baker, “Coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): searching for sustainable control strategies,” Bulletin of Entomological Research, vol. 96, no. 3, pp. 223–233, Jun. 2006, doi: 10.1079/BER2006434. Available: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/498489892D283A049CD092D4C371EA6A/S0007485306000265a.pdf/div-class-title-coffee-berry-borer-span-class-italic-hypothenemus-hampei-span-coleoptera-curculionidae-searching-for-sustainable-control-strategies-div.pdf. [Accessed: Jun. 09, 2025]

[34]“Radware Bot Manager Captcha.” Available: https://iopscience.iop.org/article/10.1088/1742-6596/1167/1/012017. [Accessed: Jun. 09, 2025]

[35]“Effects of rehabilitation strategies on soil aggregation, C and N distribution and carbon management index in coffee cultivation in mined soil,” Ecological Indicators, vol. 107, p. 105668, Dec. 2019, doi: 10.1016/j.ecolind.2019.105668. Available: http://dx.doi.org/10.1016/j.ecolind.2019.105668. [Accessed: Jun. 09, 2025]

[36]“Coffea arabica and C. canephora as host plants for fruit flies (Tephritidae) and implications for commercial fruit crop pest management,” Crop Protection, vol. 156, p. 105946, Jun. 2022, doi: 10.1016/j.cropro.2022.105946. Available: http://dx.doi.org/10.1016/j.cropro.2022.105946. [Accessed: Jun. 09, 2025]

[37]“Environmental benefits of reducing N rates for coffee in the Cerrado,” Soil and Tillage Research, vol. 166, pp. 76–83, Mar. 2017, doi: 10.1016/j.still.2016.10.006. Available: http://dx.doi.org/10.1016/j.still.2016.10.006. [Accessed: Jun. 09, 2025]

[38]S. C. G. Matoso, P. G. S. Wadt, V. S. de Souza Júnior, X. L. O. Pérez, and F. Plotegher, “Variation in the properties of biochars produced by mixing agricultural residues and mineral soils for agricultural application,” Waste Management & Research, 2020, doi: 10.1177/0734242X20935180.

Available: https://journals.sagepub.com/doi/10.1177/0734242X20935180. [Accessed: Jun. 09, 2025]

[39]“Evaluation of genetic divergence of coffee genotypes using the volatile compounds and sensory attributes profile.” doi: 10.1111/1750-3841.15986. Available: http://dx.doi.org/10.1111/1750-3841.15986. [Accessed: Jun. 09, 2025]

[40]J. T. F. Rosas, F. de A. de Carvalho Pinto, D. M. de Queiroz, F. M. de Melo Villar, D. S. Magalhães Valente, and R. Nogueira Martins, “Coffee ripeness monitoring using a UAV-mounted low-cost multispectral camera,” Precision Agriculture, vol. 23, no. 1, pp. 300–318, Aug. 2021, doi: 10.1007/s11119-021-09838-3. Available: https://link.springer.com/article/10.1007/s11119-021-09838-3. [Accessed: Jun. 09, 2025]

Descargas

Publicado

2025-12-27

Número

Sección

Artículos

Cómo citar

Lopez Espana, J. J. ., Jimenez Armenta, F. A. ., Cervantes-Suarez, D. A. ., & Botello-Mahecha, B. N. . (2025). Análisis Cienciométrico: Desarrollo tecnológico en la producción de café. Interfaces, 8(2). https://doi.org/10.18041/2619-4465/interfaces.2.13408