Desarrollo y evolución de los sistemas hidropónicos en agricultura protegida: un análisis cienciométrico y una revisión sistemática
DOI:
https://doi.org/10.18041/2619-4465/interfaces.2.13400Palabras clave:
Hidroponía, Agricultura protegida, Análisis cienciométrico, SostenibilidadResumen
La agricultura tradicional enfrenta limitaciones crecientes para abordar desafíos globales como el cambio climático, la escasez de agua y la degradación del suelo. En este contexto, los sistemas hidropónicos han surgido como una alternativa eficiente y sostenible dentro de la agricultura protegida. A pesar de su expansión en las últimas décadas, aún no se ha realizado una revisión exhaustiva que analice su evolución desde una perspectiva cronológica y cienciométrica. Por lo tanto, el objetivo de este estudio es reconstruir la trayectoria histórica y tecnológica de los sistemas hidropónicos aplicados en entornos de invernadero. Para lograrlo, se llevó a cabo una revisión sistemática siguiendo las directrices PRISMA, basada en 545 publicaciones científicas indexadas en las bases de datos Scopus y Web of Science (WoS) entre 2004 y 2024. Los resultados revelan una evolución desde métodos convencionales hacia sistemas altamente automatizados e integrados con tecnologías digitales, como el Internet de las cosas (IoT). El análisis identifica a China y Estados Unidos como los líderes en producción científica, y destaca la importancia de optimizar el uso de los recursos hídricos y la nutrición mineral. Este estudio proporciona una visión estructurada de los avances en hidroponía, subrayando su potencial para mejorar la seguridad alimentaria y promover una producción agrícola resiliente y eficiente.
Descargas
Referencias
[1]M. Farvardin, M. Taki, S. Gorjian, E. Shabani, and J. C. Sosa-Savedra, “Assessing the physical and environmental aspects of greenhouse cultivation: A comprehensive review of conventional and hydroponic methods,” Sustainability, vol. 16, no. 3, p. 1273, Feb. 2024, doi: 10.3390/su16031273.
[2]T. Sharma et al., “Hydroponics farming,” Mar. 31, 2025, Wiley. doi: 10.1002/9781394186426.ch13.
[3]S. Mofatteh, M. Khanali, A. Akram, and M. Afshar, “Progressing environmental sustainability in hydroponic greenhouse systems: Embracing circular bioeconomy through compost and biochar pathways,” J. Clean. Prod., vol. 475, no. 143600, p. 143600, Oct. 2024, doi: 10.1016/j.jclepro.2024.143600.
[4]L. M. Young, K. So Hui, R. M. Young, C. G. Lee, and D. Kim, “Nutrient dynamics and resource-use efficiency in greenhouse strawberries: Effects of control variables in closed-loop hydroponics,” 2023. doi: 10.2139/ssrn.4485206.
[5]C. M. M. Imaging, “RETRACTION: Efficacy and Safety of Different Thermal Ablation Modalities for Papillary Thyroid Microcarcinoma: A Network Meta-Analysis,” Contrast Media Mol Imaging, vol. 2025, p. 9836570, Feb. 2025, doi: 10.1155/cmmi/9836570.
[6]G. K. Hutchinson, Z. R. Ames, K. Nemali, and R. S. Ferrarezi, “Arugula and lettuce responses to greenhouse hydroponic systems: An analysis of yield and resource use efficiencies,” HortScience, vol. 60, no. 4, pp. 601–612, Apr. 2025, doi: 10.21273/hortsci18391-24.
[7]S. Skouri, S. Bouadila, R. Ayed, and S. Chehaibi, “Climate control for hydroponic greenhouse: A detailed evaluation of heating and cooling solutions,” in 2025 15th International Renewable Energy Congress (IREC), IEEE, Feb. 2025, pp. 1–6. doi: 10.1109/irec64614.2025.10926801.
[8]B. Baiyin et al., “How the nutrient flow environment promotes lettuce growth in hydroponics,” Environ. Exp. Bot., vol. 233, no. 106137, p. 106137, May 2025, doi: 10.1016/j.envexpbot.2025.106137.
[9]F. Mauricio et al., “Scientometric analysis of Activated Carbon or probiotics in mouthwashes or toothpastes: Dynamicity, spatiotemporal evolution and trends,” Odovtos - Int. J. Dent. Sci., pp. 247–258, Jul. 2024, doi: 10.15517/ijds.2024.60813.
[10]J. Fleta-Asín, F. Muñoz, and C. Sáenz-Royo, “A methodological approach for enhancing visualization of country data representation in the presence of significant spatial disparity,” MethodsX, vol. 13, p. 102833, Dec. 2024, doi: 10.1016/j.mex.2024.102833.
[11]Y. Li and A. Ngom, “Data integration in machine learning,” in 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, Nov. 2015. doi: 10.1109/bibm.2015.7359925.
[12]S. Guo, J. Lin, Y. Zhang, and Z.-L. Huang, “Enhancing the data processing speed of a deep-learning-based three-dimensional single molecule localization algorithm (FD-DeepLoc) with a combination of feature compression and pipeline programming,” J. Innov. Opt. Health Sci., vol. 18, no. 02, Mar. 2025, doi: 10.1142/s1793545824500251.
[13]K. K. Y. Shin, T. P. Ping, M. G. B. Ling, C. Chee Jiun, and N. A. B. Bolhassan, “- Low-cost automated hydroponic system for urban farming,” HardwareX, vol. 17, p. e00498, Mar. 2024, doi: 10.1016/j.ohx.2023.e00498.
[14]C. Wang and J. Gong, “Intelligent agricultural greenhouse control system based on Internet of Things and machine learning,” arXiv [eess.SY], 2024. doi: 10.48550/ARXIV.2402.09488.
[15]C. Bua, D. Adami, and S. Giordano, “GymHydro: An Innovative Modular Small-Scale Smart Agriculture System for Hydroponic Greenhouses,” Electronics, vol. 13, no. 7, p. 1366, Apr. 2024, doi: 10.3390/electronics13071366.
[16]“Effect of system, grafting, and harvest maturity stage on the quality of tomatoes grown in greenhouses.”, 2024, Accessed: Jan. 03, 2025. [Online]. Available: https://doi.org/10.17660/ActaHortic.2024.1396.61
[17]S. Faliagka et al., “Development of a greenhouse wastewater stream utilization system for on-site microalgae-based biostimulant production,” AgriEngineering, vol. 6, no. 3, pp. 1898–1923, Jun. 2024, doi: 10.3390/agriengineering6030111.
[18]H. Ebrahimi, A. Soltani Mohammadi, S. Boroomand Nasab, N. Alamzadeh Ansari, and A. Juárez-Maldonado, “Evaluation the impact of silicon nanoparticle on growth and water use efficiency of greenhouse tomato in drought stress condition,” Appl. Water Sci., vol. 14, no. 9, Sep. 2024, doi: 10.1007/s13201-024-02256-6.
[19] S. B. Mascada, R. Lobato-Ortiz; J. J.García-Zavala; E. Rodríguez-Guzmán; S. Cruz-Izquierdo, “Advanced lines of round greenhouse tomatoes as experimental varieties,” Rev. Chapingo Ser. Hortic., vol. 31, 2024, doi: 10.5154/r.rchsh.2024.07.006.
[20]C. McGehee, A. Louyakis, and R. E. Raudales, “Spatial variation of Oomycetes and bacteria on surfaces, solutions, and plants from a commercial hydroponic greenhouse,” Phytobiomes J., vol. 8, no. 3, pp. 297–308, Jul. 2024, doi: 10.1094/pbiomes-08-23-0078-r.
[21]A. K. Singh, B. Bravo-Ureta, R. McAvoy, and X. Yang, “GREENBOX technology II - comparison of environmental conditions, productivity, and water consumption with greenhouse operation,” J. ASABE, vol. 66, no. 5, pp. 1089–1098, 2023, doi: 10.13031/ja.15344.
[22]A. K. Singh, R. J. McAvoy, B. Bravo-Ureta, and X. Yang, “Comparison of environmental condition, productivity, and resources use between GREENBOX and Greenhouse for growing lettuce,” in 2021 ASABE Annual International Virtual Meeting, July 12-16, 2021, St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2021. doi: 10.13031/aim.202100455.
[23]L. Wang et al., “Performance analysis of two typical greenhouse lettuce production systems: commercial hydroponic production and traditional soil cultivation,” Front Plant Sci, vol. 14, p. 1165856, Jul. 2023, doi: 10.3389/fpls.2023.1165856.
[24]H. W. Ku, C. T. Tok, A. Suresh, and B. L. Ong, “‘Active’ hydroponic greenhouse system to kick-start and augment reforestation program through carbon sequestration – an experimental and theoretical feasibility study,” J. Clean. Prod., vol. 129, pp. 637–646, Aug. 2016, doi: 10.1016/j.jclepro.2016.03.109.
[25]O. Zghal et al., “CFD validation and interior climate analysis of a span-less greenhouse,” in 2025 15th International Renewable Energy Congress (IREC), IEEE, Feb. 2025, pp. 1–5. doi: 10.1109/irec64614.2025.10926754.
[26]K. Florakis, S. Trevezas, and V. Letort, “Predicting tomato water consumption in a hydroponic greenhouse: contribution of light interception models,” Front Plant Sci, vol. 14, p. 1264915, Nov. 2023, doi: 10.3389/fpls.2023.1264915.
[27]Y. B. Suharto, H. Suhardiyanto, A. D. Susila, and Supriyanto, “Artificial neural networks model for photosynthetic rate prediction of leaf vegetable crops under normal and nutrient-stressed in greenhouse,” Hayati, vol. 32, no. 2, pp. 300–309, Dec. 2024, doi: 10.4308/hjb.32.2.300-309.
[28]P. Gourshettiwar and K. T. V. Reddy, “Machine learning and IoT-based greenhouse hydroponics: A survey of state-of-the-art techniques and applications,” in AIP Conference Proceedings, AIP Publishing, 2024, p. 080013. doi: 10.1063/5.0241091.
[29]O. Abedrabboh, M. Koç, and Y. Biçer, “Sustainable food development for societies in hot arid regions: Thermoeconomic assessment of passive-cooled soil-based and hydroponic greenhouses,” J. Clean. Prod., vol. 412, no. 137250, p. 137250, Aug. 2023, doi: 10.1016/j.jclepro.2023.137250.
[30]G. K. Hutchinson, L. X. Nguyen, Z. Rubio Ames, K. Nemali, and R. S. Ferrarezi, “Sensor-controlled fertigation management for higher yield and quality in greenhouse hydroponic strawberries,” Front Plant Sci, vol. 15, p. 1469434, 2024, doi: 10.3389/fpls.2024.1469434.
[31]E. Michalis, C.-E. Giatra, D. Skordos, and A. Ragkos, “Assessing the different economic feasibility scenarios of a hydroponic tomato greenhouse farm: A case study from Western Greece,” Sustainability, vol. 15, no. 19, p. 14233, Sep. 2023, doi: 10.3390/su151914233.
[32]R. F. Alshebli and Y. Bicer, “Energy and exergy analysis of a renewable energy-driven ion recovery system for hydroponic greenhouses,” Sustain. Energy Technol. Assessments, vol. 53, no. 102628, p. 102628, Oct. 2022, doi: 10.1016/j.seta.2022.102628.
[33]S. Kwon, D. Kim, T. Moon, and J. E. Son, “Evaluation of the light use efficiency and water use efficiency of sweet peppers subjected to supplemental interlighting in greenhouses,” Hortic. Environ. Biotechnol., Jan. 2023, doi: 10.1007/s13580-022-00508-5.
[34]M. R. Fayezizadeh, N. A. Z. Ansari, M. Albaji, and E. Khaleghi, “Effects of hydroponic systems on yield, water productivity and stomatal gas exchange of greenhouse tomato cultivars,” Agric. Water Manag., vol. 258, no. 107171, p. 107171, Dec. 2021, doi: 10.1016/j.agwat.2021.107171.
[35]T. Jenkins, E. D. Pliakoni, C. Rivard, M. Aslanidou, and N. Katsoulas, “Effect of system, grafting, and harvest maturity stage on the quality of tomatoes grown in greenhouses,” Acta Hortic., no. 1396, pp. 465–470, Jun. 2024, doi: 10.17660/actahortic.2024.1396.61.
[36]W. O. Baudoin, “Integrated greenhouse production and protection (igpp) for improved quality of horticulture produce,” Acta Hortic., no. 582, pp. 149–152, Jun. 2002, doi: 10.17660/actahortic.2002.582.12.
[37]M. L. Herrero, A. Hermansen, and O. N. Elen, “Occurrence of Pythium spp. and Phytophthora spp. in Norwegian Greenhouses and their Pathogenicity on Cucumber Seedlings,” J. Phytopathol. (1986), vol. 151, no. 1, pp. 36–41, Jan. 2003, doi: 10.1046/j.1439-0434.2003.00676.x.
[38]A. Picot et al., “Water Microbiota in Greenhouses With Soilless Cultures of Tomato by Metabarcoding and Culture-Dependent Approaches,” Front Microbiol, vol. 11, p. 1354, Jun. 2020, doi: 10.3389/fmicb.2020.01354.
[39]X. Zhang, C. Johnson, and D. Reed, “Diversity of Species Recovered from Float-Bed Tobacco Transplant Production Greenhouses,” Plant Dis, vol. 107, no. 6, pp. 1892–1901, Jun. 2023, doi: 10.1094/PDIS-06-22-1438-RE.
[40]N. Katsoulas, C. M. Demmelbauer-Benitez, A. Elvanidi, E. Gourzoulidou, and J. F. J. Max, “Reuse of cucumber drainage nutrient solution in secondary crops in greenhouses: initial results,” Acta Hortic., no. 1296, pp. 767–774, Nov. 2020, doi: 10.17660/actahortic.2020.1296.97.
[41]N. Katsoulas, T. Bartzanas, and C. Kittas, “Online professional irrigation scheduling system for greenhouse crops,” Acta Hortic., no. 1154, pp. 221–228, Mar. 2017, doi: 10.17660/actahortic.2017.1154.29.
[42]N. Katsoulas, C. Kittas, C. Fidaros, T. Bartzanas, and K. Baxevanou, “Study of a passive solar heating greenhouse crop grow gutter,” Acta Hortic., no. 893, pp. 381–388, Apr. 2011, doi: 10.17660/actahortic.2011.893.35.
[43]S. Bouadila, S. Baddadi, R. Ben Ali, R. Ayed, and S. Skouri, “Deploying low-carbon energy technologies in soilless vertical agricultural greenhouses in Tunisia,” Therm. Sci. Eng. Prog., vol. 42, no. 101896, p. 101896, Jul. 2023, doi: 10.1016/j.tsep.2023.101896.
[44]D. J. Cantliffe, N. L. Shaw, E. Jovicich, L. S. Osborne, and P. J. Stoffella, “Greenhouse production of vegetable crops grown with a closed-loop fertigation system in a pesticide-free environment,” Acta Hortic., no. 801, pp. 1455–1463, Nov. 2008, doi: 10.17660/actahortic.2008.801.179.
[45]D. Savvas, S. Drakatos, I. Panagiotakis, and G. Ntatsi, “NUTRISENSE: a new online portal to calculate nutrient solutions and optimize fertilization of greenhouse crops grown hydroponically,” Acta Hortic., no. 1320, pp. 149–156, Aug. 2021, doi: 10.17660/actahortic.2021.1320.19.
[46]D. Savvas, “Modern developments in the use of inorganic media for greenhouse vegetable and flower production,” Acta Hortic., no. 819, pp. 73–86, Mar. 2009, doi: 10.17660/actahortic.2009.819.7.
[47]G. K. Ntinas, F. Bantis, A. Koukounaras, and P. G. Kougias, “Exploitation of liquid digestate as the sole nutrient source for floating hydroponic cultivation of baby lettuce (Lactuca sativa) in greenhouses,” Energies, vol. 14, no. 21, p. 7199, Nov. 2021, doi: 10.3390/en14217199.
[48]G. K. Ntinas, D. Dannehl, I. Schuch, T. Rocksch, and U. Schmidt, “Sustainable greenhouse production with minimised carbon footprint by energy export,” Biosyst. Eng., vol. 189, pp. 164–178, Jan. 2020, doi: 10.1016/j.biosystemseng.2019.11.012.
[49]D. Savvas, “SW—soil and water,” Biosyst. Eng., vol. 83, no. 2, pp. 225–236, Oct. 2002, doi: 10.1006/bioe.2002.0106.
[50]G. K. Ntinas et al., “Performance and hydroponic tomato crop quality characteristics in a novel greenhouse using dye-sensitized solar cell technology for covering material,” Horticulturae, vol. 5, no. 2, p. 42, Jun. 2019, doi: 10.3390/horticulturae5020042.
[51]N. L. Shaw and D. J. Cantliffe, “Hydroponic greenhouse production of ‘baby’ squash: Selection of suitable squash types and cultivars,” Horttechnology, vol. 15, no. 3, pp. 722–728, Jan. 2005, doi: 10.21273/horttech.15.3.0722.
[52]D. Savvas et al., “Interactions between salinity and irrigation frequency in greenhouse pepper grown in closed-cycle hydroponic systems,” Agric. Water Manag., vol. 91, no. 1–3, pp. 102–111, Jul. 2007, doi: 10.1016/j.agwat.2007.05.001.
[53]C. Kubota, “A theoretical comparison of costs between greenhouses and indoor farms: a case analysis in Ohio,” Acta Hortic., no. 1296, pp. 79–86, Nov. 2020, doi: 10.17660/actahortic.2020.1296.11.
[54]C. Kubota et al., “Changes in selected quality attributes of greenhouse tomato fruit as affected by pre- and postharvest environmental conditions in year-round production,” HortScience, vol. 47, no. 12, pp. 1698–1704, Dec. 2012, doi: 10.21273/hortsci.47.12.1698.
[55]G. Giacomelli, M. Kacira, R. Furfaro, R. L. Patterson, and P. Sadler, “Plant production, energy balance and monitoring-control-telepresence in a recirculating hydroponic vegetable crop production system: prototype lunar greenhouse,” Acta Hortic., no. 1107, pp. 53–60, Dec. 2015, doi: 10.17660/actahortic.2015.1107.6.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Interfaces

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.