Análisis cienciométrico de métodos cuantitativos para evaluar la capacidad de absorción de CO₂ en bosques tropicales
DOI:
https://doi.org/10.18041/2619-4465/interfaces.1.13394Palabras clave:
Absorción de CO₂, Bosques tropicales, Análisis cienciométrico, Métodos cuantitativos, Cambio climáticoResumen
El cambio climático ha intensificado la necesidad de cuantificar con precisión la capacidad de absorción de CO₂ de los bosques tropicales, los cuales actúan como sumideros de carbono fundamentales en el balance global de este elemento. Para abordar esta problemática, se llevó a cabo un análisis cienciométrico con el fin de sintetizar la literatura científica disponible mediante el uso de bases de datos como Scopus y Web of Science (WoS). Este análisis permitió identificar las tendencias de investigación predominantes y los enfoques metodológicos más utilizados en este campo. Los resultados revelan la aparición de métodos innovadores para cuantificar el almacenamiento de carbono; sin embargo, persisten desafíos significativos, como la estandarización de las técnicas, la escasez de estudios en regiones neotropicales y la débil vinculación entre la investigación científica y las políticas públicas orientadas a la mitigación del cambio climático. En este marco, el presente artículo de revisión no solo examina las metodologías actuales, sino que también subraya la importancia crítica de integrar estas herramientas en la toma de decisiones climáticas globales, proporcionando una base sólida para futuras investigaciones en el área.
Descargas
Referencias
[1]S. Robledo-Giraldo, “The vital role of scientometrics in modern research,” Clío Am., vol. 18, no. 35, pp. 1–3, May 2024, doi: 10.21676/23897848.6020. Available: https://revistas.unimagdalena.edu.co/index.php/clioamerica/article/view/6020
[2]V. Nzabarinda et al., “Expanding forest carbon sinks to mitigate climate change in Africa,” Renew. Sustain. Energy Rev., vol. 207, no. 114849, p. 114849, Jan. 2025, doi: 10.1016/j.rser.2024.114849. Available: http://dx.doi.org/10.1016/j.rser.2024.114849
[3]Y. Malhi, C. Doughty, and D. Galbraith, “The allocation of ecosystem net primary productivity in tropical forests,” Philos Trans R Soc Lond B Biol Sci, vol. 366, no. 1582, pp. 3225–3245, Nov. 2011, doi: 10.1098/rstb.2011.0062. Available: http://dx.doi.org/10.1098/rstb.2011.0062
[4]C. A. Mgbemene, C. C. Nnaji, and C. Nwozor, “Industrialization and its Backlash: Focus on Climate Change and its Consequences,” J. Environ. Sci. Technol., vol. 9, no. 4, pp. 301–316, Jun. 2016, doi: 10.3923/jest.2016.301.316. Available: https://www.scialert.net/abstract/?doi=jest.2016.301.316
[5]P. K. Pati, P. Kaushik, M. L. Khan, and P. K. Khare, “Allometric equations for biomass and carbon stock estimation of small diameter woody species from tropical dry deciduous forests: Support to REDD+,” Trees For. People, vol. 9, no. 100289, p. 100289, Sep. 2022, doi: 10.1016/j.tfp.2022.100289. Available: https://linkinghub.elsevier.com/retrieve/pii/S2666719322000966
[6]J. L. Ramírez López, M. E. Córdova Perugachi, J. L. Imbaquingo Rosero, and E. J. Chagna Avila, “Modelos alométricos para estimar biomasa aérea en bosques secundarios montanos del noroccidente de Ecuador,” Caldasia, vol. 44, no. 1, pp. 82–94, Mar. 2022, doi: 10.15446/caldasia.v44n1.88198. Available: https://revistas.unal.edu.co/index.php/cal/article/view/88198
[7]J. Chave et al., “Improved allometric models to estimate the aboveground biomass of tropical trees,” Glob Chang Biol, vol. 20, no. 10, pp. 3177–3190, Oct. 2014, doi: 10.1111/gcb.12629. Available: http://dx.doi.org/10.1111/gcb.12629
[8]F. Islas-Gutiérrez et al., “ECUACIÓN ALOMÉTRICA PARA ESTIMAR BIOMASA AÉREA DE ÁRBOLES DE Pinus hartwegii LINDL. A PARTIR DE DATOS LIDAR,” Rev. Fitotec. Mex., vol. 47, no. 1, p. 70, Mar. 2024, doi: 10.35196/rfm.2024.1.70. Available: https://revfitotecnia.mx/index.php/RFM/article/view/1695
[9]T. M. Basuki, P. E. van Laake, A. K. Skidmore, and Y. A. Hussin, “Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests,” For. Ecol. Manage., vol. 257, no. 8, pp. 1684–1694, Mar. 2009, doi: 10.1016/j.foreco.2009.01.027. Available: https://linkinghub.elsevier.com/retrieve/pii/S0378112709000516
[10]R. Aabeyir, S. Adu-Bredu, W. A. Agyare, and M. J. C. Weir, “Allometric models for estimating aboveground biomass in the tropical woodlands of Ghana, West Africa,” For. Ecosyst., vol. 7, no. 1, Dec. 2020, doi: 10.1186/s40663-020-00250-3. Available: https://forestecosyst.springeropen.com/articles/10.1186/s40663-020-00250-3
[11]D. R. Aryal et al., “Silvopastoral systems and remnant forests enhance carbon storage in livestock-dominated landscapes in Mexico,” Sci Rep, vol. 12, no. 1, p. 16769, Oct. 2022, doi: 10.1038/s41598-022-21089-4. Available: http://dx.doi.org/10.1038/s41598-022-21089-4
[12]F. Carrillo-Anzures, M. Acosta-Mireles, M. Hernandez-Santiago, R. Perez-Miranda, and M. E. Romero-Sanchez, “ESTIMACIÓN DE BIOMASA Y CARBONO ALMACENADO EN LA VEGETACIÓN Y SUELO DEL ÁREA DE INFLUENCIA DE LA PRESA ‘LA PURÍSIMA’, ESTADO DE GUANAJUATO, MÉXICO,” Trop. Subtrop. Agroecosystems, vol. 26, no. 3, Sep. 2023, doi: 10.56369/tsaes.4854. Available: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/4854
[13]V. Matzek et al., “Increases in soil and woody biomass carbon stocks as a result of rangeland riparian restoration,” Carbon Balance Manag, vol. 15, no. 1, p. 16, Jul. 2020, doi: 10.1186/s13021-020-00150-7. Available: http://dx.doi.org/10.1186/s13021-020-00150-7
[14]J. Garbole and B. Teklu, “Woody species’ carbon sequestration and soil seed bank conservation potentials of traditional rangeland management strategies in Western Guji, Southern Ethiopia,” Environmental and Sustainability Indicators, vol. 23, no. 100459, p. 100459, Sep. 2024, doi: 10.1016/j.indic.2024.100459. Available: https://linkinghub.elsevier.com/retrieve/pii/S2665972724001272
[15]S. Xi, T. Hu, X. Mou, X. Kou, X. Wang, and Y. Yu, “Reduced plant species diversity and soil carbon and nitrogen contents driven by vegetation patchiness in alpine meadows,” J. Veg. Sci., vol. 35, no. 1, Jan. 2024, doi: 10.1111/jvs.13238. Available: https://onlinelibrary.wiley.com/doi/10.1111/jvs.13238
[16]Z. Ma et al., “The role of tidal creeks in shaping carbon and nitrogen patterns in a Chinese salt marsh,” Front. Mar. Sci., vol. 11, p. 1361474, Apr. 2024, doi: 10.3389/fmars.2024.1361474. Available: https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2024.1361474/pdf. [Accessed: Mar. 17, 2025]
[17]S. Sigamani et al., “Assessment of blue carbon sequestration potential of Avicennia marina in the semi-arid zone of Gulf of Kutch, Gujarat, India,” Reg. Stud. Mar. Sci., vol. 62, no. 102937, p. 102937, Sep. 2023, doi: 10.1016/j.rsma.2023.102937. Available: https://linkinghub.elsevier.com/retrieve/pii/S2352485523001263
[18]E. Wohl and R. L. Knox, “A first-order approximation of floodplain soil organic carbon stocks in a river network: The South Platte River, Colorado, USA as a case study,” Sci Total Environ, vol. 852, p. 158507, Dec. 2022, doi: 10.1016/j.scitotenv.2022.158507. Available: http://dx.doi.org/10.1016/j.scitotenv.2022.158507
[19]L. Symmank, S. Natho, M. Scholz, U. Schröder, K. Raupach, and C. Schulz-Zunkel, “The impact of bioengineering techniques for riverbank protection on ecosystem services of riparian zones,” Ecol. Eng., vol. 158, no. 106040, p. 106040, Dec. 2020, doi: 10.1016/j.ecoleng.2020.106040. Available: https://linkinghub.elsevier.com/retrieve/pii/S0925857420303281
[20]R. Pranckutė, “Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world,” Publications, vol. 9, no. 1, p. 12, Mar. 2021, doi: 10.3390/publications9010012. Available: https://www.mdpi.com/2304-6775/9/1/12
[21]J. Zhu and W. Liu, “A tale of two databases: the use of Web of Science and Scopus in academic papers,” Scientometrics, vol. 123, no. 1, pp. 321–335, Apr. 2020, doi: 10.1007/s11192-020-03387-8. Available: http://link.springer.com/10.1007/s11192-020-03387-8
[22]R. Ferreira, M. Canesche, P. Jamieson, O. P. V. Neto, and J. A. M. Nacif, “Examples and tutorials on using Google Colab and Gradio to create online interactive student‐learning modules,” Comput. Appl. Eng. Educ., vol. 32, no. 4, Jul. 2024, doi: 10.1002/cae.22729. Available: https://onlinelibrary.wiley.com/doi/10.1002/cae.22729
[23]Elenara Chaves Edler and Jorge Almeida Guimarães, “Tropical forests as a target of global scientific production and the comparative position of Brazil” pensamineto americano., vol. 13, no. 25, p. 62-75 , Jul. 2021, https://10.21803/ pensam.13.25.386. Available: http://publicaciones.americana.edu.co/index.php/pensamientoamericano/index
[24]S. Nath, A. J. Nath, G. W. Sileshi, and A. K. Das, “Biomass stocks and carbon storage in Barringtonia acutangula floodplain forests in North East India,” Biomass Bioenergy, vol. 98, pp. 37–42, Mar. 2017, doi: 10.1016/j.biombioe.2017.01.014. Available: http://dx.doi.org/10.1016/j.biombioe.2017.01.014
[25]S. Dharumarajan et al., “Prediction and mapping of soil organic carbon stock via large datasets coupled with pedotransfer functions,” Earth Sci. Inform., vol. 18, no. 3, Mar. 2025, doi: 10.1007/s12145-025-01822-z. Available: http://dx.doi.org/10.1007/s12145-025-01822-z
[26]S. G. Singh, A. Vennila, R. Singh, V. S. Bharti, S. P. Shukla, and C. S. Purushothaman, “Standing carbon stock of Thane Creek mangrove ecosystem: An integrated approach using allometry and remote sensing techniques,” Reg. Stud. Mar. Sci., vol. 67, no. 103207, p. 103207, Dec. 2023, doi: 10.1016/j.rsma.2023.103207. Available: http://dx.doi.org/10.1016/j.rsma.2023.103207
[27]R. Walcker et al., “Control of ‘blue carbon’ storage by mangrove ageing: Evidence from a 66-year chronosequence in French Guiana,” Glob. Chang. Biol., vol. 24, no. 6, pp. 2325–2338, Jun. 2018, doi: 10.1111/gcb.14100. Available: http://dx.doi.org/10.1111/gcb.14100
[28]A. M. E. Brunori et al., “Carbon balance and Life Cycle Assessment in an oak plantation for mined area reclamation,” J. Clean. Prod., vol. 144, pp. 69–78, Feb. 2017, doi: 10.1016/j.jclepro.2016.12.116. Available: http://dx.doi.org/10.1016/j.jclepro.2016.12.116
[29]L. Zuluaga Zuluaga and E. S. Castro Escobar, “Valoración de servicios ambientales por captura de CO2 en un ecosistema de bosque seco tropical en el municipio de El Carmen de Bolívar, Colombia,” Luna Azul, no. 47, pp. 1–20, Jul. 2018, doi: 10.17151/luaz.2018.47.1. Available: http://dx.doi.org/10.17151/luaz.2018.47.1
[30]J. Jia, Y. Gao, K. Sun, Y. Lu, J. Wang, and K. Shi, “Phytoplankton community composition, carbon sequestration, and associated regulatory mechanisms in a floodplain lake system,” Environ. Pollut., vol. 306, no. 119411, p. 119411, Aug. 2022, doi: 10.1016/j.envpol.2022.119411. Available: http://dx.doi.org/10.1016/j.envpol.2022.119411
[31]T. Yan et al., “The relationship between soil particle size fractions, associated carbon distribution and physicochemical properties of historical land-use types in newly formed reservoir buffer strips,” Sustainability, vol. 14, no. 14, p. 8448, Jul. 2022, doi: 10.3390/su14148448. Available: http://dx.doi.org/10.3390/su14148448
[32]D. Liu et al., “Fungal necromass contribution to carbon sequestration in global croplands: A meta-analysis of driving factors and conservation practices,” Sci. Total Environ., vol. 949, no. 174954, p. 174954, Nov. 2024, doi: 10.1016/j.scitotenv.2024.174954. Available: http://dx.doi.org/10.1016/j.scitotenv.2024.174954
[33]R. Yousefpour, N. Nakamura, and N. Matsumura, “Forest management approaches for climate change mitigation and adaptation: A comparison between Germany and japan,” J. Sustain. For., vol. 39, no. 6, pp. 635–653, Aug. 2020, doi: 10.1080/10549811.2020.1771376. Available: http://dx.doi.org/10.1080/10549811.2020.1771376
[34]B. Fungo et al., “Forage biomass and soil aggregate carbon under fodder banks with contrasting management regimes,” Agrofor. Syst., vol. 94, no. 3, pp. 1023–1035, Jun. 2020, doi: 10.1007/s10457-019-00473-6. Available: http://dx.doi.org/10.1007/s10457-019-00473-6
[35]S. K. Nag, B. Das Ghosh, S. Nandy, M. Aftabuddin, U. K. Sarkar, and B. K. Das, “Comparative assessment of carbon sequestration potential of different types of wetlands in lower Gangetic basin of West Bengal, India,” Environ. Monit. Assess., vol. 195, no. 1, p. 154, Nov. 2022, doi: 10.1007/s10661-022-10729-x. Available: http://dx.doi.org/10.1007/s10661-022-10729-x
[36]W. dos Santos Souza et al., “Soil carbon sequestration under N fertilized or mixed legume-grass pastures depends on soil type and prior land-use,” Geoderma Reg., vol. 39, no. e00876, p. e00876, Dec. 2024, doi: 10.1016/j.geodrs.2024.e00876. Available: http://dx.doi.org/10.1016/j.geodrs.2024.e00876
[37]R. L. Morris, B. Fest, D. Stokes, C. Jenkins, and S. E. Swearer, “The coastal protection and blue carbon benefits of hybrid mangrove living shorelines,” J. Environ. Manage., vol. 331, no. 117310, p. 117310, Apr. 2023, doi: 10.1016/j.jenvman.2023.117310. Available: http://dx.doi.org/10.1016/j.jenvman.2023.117310
[38]P. Kopeć and A. Płażek, “An Attempt to Restore the Fertility of Miscanthus × giganteus,” Agronomy (Basel), vol. 13, no. 2, p. 323, Jan. 2023, doi: 10.3390/agronomy13020323. Available: http://dx.doi.org/10.3390/agronomy13020323
[39]A. K. Raj, R. M. Raj, T. K. Kunhamu, V. Jamaludheen, and A. R. Chichaghare, “Management of tree fodder banks for quality forage production and carbon sequestration in humid tropical cropping systems – An overview,” Indian J. Anim. Sci., vol. 93, no. 1, Jan. 2023, doi: 10.56093/ijans.v93i1.120692. Available: http://dx.doi.org/10.56093/ijans.v93i1.120692
[40]U. Iqbal, M. Hameed, F. Ahmad, M. S. A. Ahmad, and M. Ashraf, “Unraveling the survival potential of a desert halophyte Salvadora oleoides Decne. across heterogenic environments,” Trees, vol. 36, no. 3, pp. 1085–1104, Feb. 2022, doi: 10.1007/s00468-022-02274-4. Available: https://link.springer.com/article/10.1007/s00468-022-02274-4. [Accessed: April. 17, 2025]
[41]W. Dong, E. T. A. Mitchard, H. Yu, S. Hancock, and C. M. Ryan, “Forest aboveground biomass estimation using GEDI and earth observation data through attention-based deep learning,” Nov. 06, 2023. Available: http://arxiv.org/abs/2311.03067. [Accessed: Jan. 17, 2025]
[42]N. Picard et al., “Selecting allometric equations to estimate forest biomass from plot- rather than individual-level predictive performance,” Biogeosciences, vol. 22, no. 5, pp. 1413–1426, Mar. 2025, doi: 10.5194/bg-22-1413-2025. Available: https://doi.org/10.5194/bg-22-1413-2025. [Accessed: April. 17, 2025]
[43]N. I. Fawzi et al., “Integrated water management practice in tropical peatland agriculture has low carbon emissions and subsidence rates,” Heliyon, vol. 10, no. 5, p. e26661, Mar. 2024, doi: 10.1016/j.heliyon.2024.e26661. Available: http://dx.doi.org/10.1016/j.heliyon.2024.e26661
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Interfaces

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.